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The Lifshitz-Slyozof-Wagner (LSW) theory, which corresponds to a zero volume fraction
approximation, was developed to model kinetics of precipitate growth from supersaturated
solid solutions. The subsequent modifications of the LSW theory for the incorporations of
various factors including volume fractions of precipitates to fit the experimental data from
the coarsening precipitates were made by various workers during last twenty five years.
The LSW theory and its modifications have been applied on the diffusion-controlled
Ostwald ripening of the γ ′ precipitate particles [Ni3(Al,Ti)] in nickel-based superalloys. The
important Ostwald ripening theories were reviewed in the part I of this paper, and the
coarsening characteristics of the γ ′-precipitates in Ni-base high temperature superalloys
are presented in detail in relation to these theories in the present part. A model developed
by D. McLean can be used to predict the γ ′particle growth over service lifetimes in the case
of relatively Al-rich nickel-base superalloys. Additional fundamental data (such as the
precipitate-matrix interfacial energy, diffusivity of the component species of the particle,
and the equilibrium solubility with a particle in nickel-based superalloys) can be obtained
from experimental results for coarsening, if the concentration changes during coarsening
can be measured precisely, using the methods developed by A. J. Ardell. Furthermore, the
factors affecting the shape changes and splitting of the γ ′ precipitate particles during the
coarsening were also considered seperately since the classical Ostwald ripening theories
can not explain the morphological changes. C© 2002 Kluwer Academic Publishers

1. Introduction
Nickel-base superalloys are widely used in applications
requiring strength at high temperatures. Most of these
alloys are precipitation hardened by a Ni3(Al, Ti) γ ′
phase which has an ordered fcc structure (L12-type) and
precipitates coherently in a nickel-rich fcc matrix. The
strength of a given alloy is dependent upon such factors
as volume fraction, particle size, coarsening rate, and
composition of γ ′ phase. All of these factors can be
controlled to varying degrees by heat treatment. Their
strength derives mainly from the precipitation of the
hard, ordered γ ′ phase dispersed throughout the mate-
rial. Information on the influence of time and temper-
ature on the γ ′ precipitate would be valuable not only
in the design of heat treatments for commercial super-
alloys but also for understanding the effects of high ser-
vice temperatures where coarsening and perhaps partial
solutioning of the γ ′ phase occur. The initial heat treat-
ment of the alloy and its subsequent thermal aging con-
ditions under which these materials are formed greatly

affects the size, shape, distribution and volume fraction
of the γ ′ second phase particles and in turn essentially
determines the properties of the alloy.

The changes in the shape and size distributions of
the constituent phases which occur at elevated temper-
atures by diffusion can be either beneficial or detrimen-
tal [1, 2]. Growing demands both for improved materi-
als through process optimization and for more effective
use of existing materials by reliable life-prediction tech-
niques have emphasized the need for better quantitative
descriptions of the processes leading to morphological
changes (instabilities) in alloy systems [1–5].

The following factors affect the shape changes of par-
ticles [6]: (a) the elastic energy, (b) volume fraction of
particles, (c) elastic anisotropy, (d) misfit between par-
ticles and matrix, (e) plastic deformation, (f) applied
stress, and (g) crystallographic orientation. γ ′-particles
in nickel-base superalloys generally change shape dur-
ing coarsening. The fact that the interfacial energy
provides a driving force, F , for the microstructural
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Figure 1 Rounded cuboidal type γ ′ particles in IN-100 alloy.

instability indicates the importance of the interfacial
energy to control the microstructure. The energy asso-
ciated with the coherency straining of the lattice due to
coarsening has a minimum in the directions of lowest
Young’s modulus (i.e. along the 〈100〉 directions [7–9].
Consequently, there is a low strain energy associated
with γ /γ ′ interfaces lying on {100} planes. It has been
known [7, 10, 11] for many years that γ ′ precipitates
in nickel-base superalloys change shape as they grow.
Small precipitates are spherical when their diameters
are less than 10 nm. As their size increases they be-
come cuboidal, i.e. they acquire segments of flat inter-
faces parallel to 〈100〉, so that their overall appearence
resembles a cube with rounded corners (Fig. 1).

The past experiments have demonstrated that exter-
nal stresses can significantly change the morphology of
the precipitates and their spatial arrangements [12–15],
resulting in so-called rafted microstructures consisting
of alternating lamellae of γ and γ ′ phases (14). Such-
raft-like structures can improve the yield strength by
about 30% and prolong the creep rupture life for four
times as compared to those without rafting [16].

McLean [17] distinguished two broad categories on
the basis of the origins of the driving forces for the in-
stabilities, i.e., intrinsic and extrinsic instabilities. The
motivation for intrinsic instabilities results from the re-
duction in free energy as the isolated alloy tends towards
thermodynamic equlibrium. Interfacial energies make a
particularly important contribution to this group, lead-
ing to, for example, particle coarsening. Because the
driving force for precipitate coarsening comes from the
specific free energy of the precipitate/matrix interface,
low growth rates demand that the γ /γ ′ interfaces be
coherent and have a low lattice mismatch.

The microstructural changes leading to a reduced free
energy, which occur in isothermally annealed complex
polyphase alloys in the absence of external stress influ-

ences (intrinsic instabilities), take a variety of forms.
The most important in the total interfacial energy of
the system is a reduction in the area of various in-
terfaces (e.g. grain boundaries, precipitate boundaries,
etc.). This effect is manifested in the following ways [1]:
(a) grain or precipitate coarsening (e.g. grain growth,
Ostwald ripening), (b) shape changes of grains or pre-
cipitates (e.g. spheroidization, faceting, agglomeration
etc.), and (c) interaction of phase or grain boundaries.

Coarsening is usually found to follow the behaviour
predicted by one of two models: diffusion-controlled or
interface-controlled coarsening. As far as the author’s
knowledge no study to date has shown strong evidence
for interface-controlled coarsening in nickel-base su-
peralloys, so this model will not be discussed.

In the Part I of this work, the important aspects of
the Ostwald coarsening theories including the Lifshitz-
Slyozov-Wagner (LSW) theory and its modifications
by various workers were presented, and in this part,
the applications of these theories on the ripening char-
acteristics of γ ′ precipitates in nickel-base superalloys
will be discussed. Furtheremore, the shape changes and
splitting of γ ′ particles under the various conditions will
also be reviewed.

2. Nickel-base superalloys
Cast nickel-base superalloys are typically composed
of high volume fractions of γ ′-phase coherently pre-
cipitated in a fcc matrix, together with eutectic phases
and one or more carbide phases. The desired proper-
ties and resistance to microstructural changes at high
temperatures in these alloys are obtained by all phases
with suitable structure, shape, size and distribution. It
is widely regognized that coarse-grained with serrated
grain boundaries, homogeneous compositions with uni-
form cubic γ − γ ′ microstructures and small discrete
phases at grain boundaries are typical microstructural
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features in modern advanced nickel-base cast superal-
loys [1–3]. Among all the microstructural factors, the
γ ′ precipitate morphology plays an important role in
influencing the properties of nickel-base superalloys
[18]. Therefore one subject which is important to the
development of new types of superalloys is how to pro-
duce the desirable γ ′ precipitate morphology. Since
such precipitate particles can grow during the initial
heat treatment, it is very important to be able to predict
the kinetics of growth and subsequent behaviour of this
precipitate phase [19, 20].

The γ − γ ′ microstructure of some nickel base su-
peralloys can undergo drastic changes during high tem-
perature heat treatments. The morphology of the γ ′-
precipitates evolves from different mechanisms [21]:
(a) competitive coarsening in order to reduce the spe-
cific area of the γ − γ ′ interface (Ostwald ripening) [i.e.
19, 22–25], and (b) shape changes in order to minimize
the sum of interfacial and elastic interaction energies.
Research works have been conducted concerning the
coarsening of the γ ′-precipitates during high tempera-
ture exposures of the alloys (see for example [26–28].
It has been observed that in general the precipitates
grow at an almost constant volume fraction, following
a (time)1/3 power law concerning diffusion-controlled
particle coarsening in agreement with the LSW theory.

Precipitation in Ni-base superalloys generally occurs
by a classical nucleation and growth mechanism with
a precipitate sequence of: spheres → cubes → plates.
The γ ′ precipitates are believed to nucleate as spheres to
minimize the surface area/unit volume. As the particles
grow, the coherency strains increase and thus the reduc-
tion in strain energy more than compensates for the in-
crease in surface area/unit volume manifested as phase
migration, coarsening, and shape changes, caused by
diffusion along the applied potential fields.

Lattice-parameter mismatch 
δ = 2(aγ ′ − aγ )/(aγ ′ +
aγ )
, where aγ ′ and aγ are the lattice parameters for the
γ ′ and γ phases, respectively, influences the γ ′ parti-
cle size at which this transition occurs [29], as shown
in Table I [26] and must be greater than 0.1% at the
aging temperature in order for cubes to form [22]. A
study of Table I reveals that larger mismatch causes the
transition to occur at smaller sizes. However, the sign
of mismatch apparently does not affect this transition
strongly [26].

As the particles continue to grow, they almost always
align along 〈001〉 directions due to elastic interactions

T ABL E I Effects of lattice-parameter mismatcha, δ upon shapes of
γ ′ [26]

Size at which γ ′ shows
Room-temperature significant departures from

Alloy misfit (%) spherical shape (microns)

1. Udimat 720 <0.02 0.7
2. Nimonic 105 −0.04 0.7
3. Experimental −0.11

alloy
4. Nimonic 115 −0.18 0.5
5. Nimonic 80A +0.32 0.3
6. Nimonic 90 +0.34 0.3

aδ = 2(aγ ′ − aγ )/(aγ ′ + aγ ).

between particles [22, 30, 31]. It appears as though
the elastic interactions that induce alignment determine
which particles will coarsen, but not the rate at which
they do so [22]. Interestingly, this alignment would
probably not occur if the interfacial energy were not
so low, since capilarity would overhelm the effects of
elastic interaction [29]. Relative orientations between
particles would then have little influence in determining
which particles coarsened [22].

It is widely known that the γ ′ precipitate in the Ni-Al
system undergoes a succession of morphology changes
as it grows. In order to minimize surface energy, the
initially observed shape is sphere. As the precipitate
grows the misfit strain energy continues to increase
so that gradually a cuboidal and then cube morphol-
ogy best minimizes the total energy of the precipi-
tate. Many researchers have observed this continuing
change using TEM [7, 26, 32–35] and have observed
the γ ′ cubes to be aligned parallel to the 〈100〉 direc-
tions in Ni after prolonged aging. The elastic modulus
for nickel is minimum along the cube directions so this
orientation of the precipitates is to be observed. There-
after at much larger sizes more complicated structures
occur.

2.1. Effects of γ ′ morphology on the creep
resistance of nickel-base superalloys

Mechanical properties of Ni-based superalloys are
strongly affected by the morphology, distribution, and
size of γ ′ precipitates in the γ matrix. The strength
of superalloys is related to the interactions between
γ ′ particles and moving dislocations. During the creep
exposure, γ ′ ripening can take place and the particles
may remain equiaxed [28], become irregularly shaped
[2, 36, 37] or corsen into rod or rafted morphologies
[2, 3, 12, 38–40].

The creep resistance of Ni-base superalloys depends
critically on the size and spacing of the γ ′ precipi-
tates. Using IN-100 it was concluded [1] that the creep
strength in terms of minimum creep rate is predomi-
nantly governed by γ ′ size, density and shape of par-
ticles, and to a lesser extent by the cubic particles
alignment along the 〈100〉. The initial γ ′ precipitate
morphology in cast IN-100 is usually in the form of
cubes or spheres, depending on the misfit parameter
between γ ′ and γ matrix [41]. The strengthening contri-
bution of γ ′ in this alloy is partly dependent on the size,
spacing, shape and volume fraction of the particles [1].
The strong dependence of creep rupture life on the γ ′
volume fraction has been observed in the past [1, 2,
42, 43]. The highest creep rupture life [1] was achieved
at ≈50 vol% γ ′. In a previous work [43] using alloys
with compositions near Nimonic 80A, a good correla-
tion was obtained between creep strength and the cube
root of the γ ′ volume fraction. Caron and Khan [44]
have shown the benefits of optimizing the microstruc-
ture for the single CMSX-2, which seems to be as-
sociated with the regularity of γ ′ distribution rather
than of size, and considerable interests has also been
shown in producing rafts of γ ′ in some single crystal
alloys [45] to improve the creep performance. How-
ever, McLean [46] pointed out that all of these factors
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produced relatively small benefits compared to the γ ′
volume fraction effect.

One of the most important characteristics during high
temperature creep of single crystal nickel based super-
alloys is the rapid directional coarsening of the cubic
N3Al (γ ′) precipitates to form preferentially orientated
rafts. Directional coarsening of theγ ′ precipitates under
the action of an applied stress was first studied in de-
tail by Tien and Copley [12], and this phenomenon has
subsequently been observed in many experimental and
commercial single crystal nickel based superalloys, and
the morphology and the size of the γ ′ rafts have been
widely studied [47–50]. Some papers are devoted to
analysing the magnitude and distribution of the misfit
stress by using fine element methods [50, 51].

3. Shape changes in γ′ particles: factors
affecting the shape changes

It is worth mentioning that several experimental stud-
ies have shown that a uniaxial stress applied dur-
ing precipitation can alter the precipitate morphology
[2, 12, 38, 52]. Tien and Copley (12) have studied 〈100〉
oriented single crystals of Udimet 700. After stress-
free annealing this Ni-base superalloy contains coher-
ent cube-shaped γ ′(Ni3TiAl) particles. The misfit (δ)
between the γ ′ particles and the matrix results in a pure
dilatation. Tien and Copley found both tensile and com-
pressive stress applied at elevated temperatures lead to
unidirectional coarsening followed by agglomaration
of the γ ′ precipitates. In the case of tensile stress an-
nealing, γ ′ precipitate plates form with their broad faces
aligned perpendicular to the stress axis. On the other
hand, compressive stress gives rise to needles aligned
parallel to the stress axis.

3.1. γ ′ shape change in absence
of applied stress

Although there have been many studies on the mor-
phology and evaluation of coherent precipitates in the
absence of external stresses [13, 14, 53–57], the studies
on the effect of applied stress on the particle morphol-
ogy and the evolution kinetics are much fewer. Most
of the previous studies were conducted for a single
isolated particle in an infinite matrix using Eshelby’s
method [8, 58]. The particle-particle interactions were
not taken into account, which is important when the
volume fraction of the precipitate phase is high. In
addition, the previous studies were mainly concerned
with the equliubrium shape of a particle rather then its
evolution path although most experimentally observed
particle shapes are most likely nonequilibrium. In order
to incorporate particle-particle interactions and inves-
tigate the evolution of particle morphologies, a num-
ber of simulation models were developed, including
the Monte Carlo method, continuum model, and atom-
istic approach [59–61]. However, all these methods did
not take into account the possibility of several degener-
ate ordering states, or orientations, and hence, may be
applied only to the systems with iso-structural phase
seperation such as spinodal decomposition.

In their computer simulation of the microstructural
evalution during precipitation of γ ′ particles in the ab-

sence of applied stresses Li and Chen [62] showed
that a grown γ ′ particle exhibits a cuboidal shape with
its {100}γ ′ plane parallel to {100}γ plane of the ma-
trix. Since γ /γ ′ interfacial energy was assumed to be
isotropic, the cuboidal and the (100)γ ′ ‖(100)γ orienta-
tion relationship are therefore attributable to the elastic
energy. The simulated morphology is consistent with
the experimental observations [14] as well as previ-
ous theoretical calculations and computer simulations
[13, 14, 53, 56]. It is generally agreed that the minimiza-
tion of strain energy is mainly responsible for the mor-
phology of a coherent precipitate, because the elastic
energy is a function of the shape, orientation and vol-
ume of the precipitate, and the anisotropy of interfacial
energy is small.

The morphology of a γ ′ particle in a multi-particle
system is affected by its neighbor particles because of
the elastic interaction between the γ ′ particles. When
the two particles impinge, they may coalesce and form
a single γ ′ domain, or they may stay separated by a
thin layer of the matrix phase, depending on their or-
dering states, i.e. depending on whether or not they
are in antiphase states. The morphological pattern of a
multi-particle system is hence influenced by a number
of factors, such as the density, mutual position, and the
ordering states of γ ′ particles [62].

3.2. γ ′ rafting under applied stress
Rafting occurs by coalescence of the cubic γ ′ precipi-
tates along the plane of the initially less highly stressed
matrix channels. The channels along which coalescence
occurs are generally devoid of dislocations. Once dis-
locations are introduced, directional coarsening occurs
very rapidly, before complete relief of the misfit stress
[51]. The applied stress, lattice misfit, and modulus mis-
match provide the driving force for shape evolution and
determine the orientation of the γ ′ rafts [53]. In another
words, the driving force of the rafting of γ ′ precipitates
is supposed to be the superimposing roles of the applied
and coherent stress owing to the misfit between the γ

and γ ′ lattice parameters [51, 63].
Under an applied stress at elevated temperatures,

the discrete-type γ ′ particles link up to form a rafted
γ ′ morphology. Different types of rod or rafted γ ′
morphologies may develop during creep deformation,
which depends on the lattice mismatch, the sign of
the applied stress and the crystallographic orientation
[53, 64, 37]. Also depending upon relative elastic mod-
uli and lattice-parameter mismatch of the two phases,
the γ ′ particles may coalesce either into rods or plates
parallel to the applied stress or into plates perpendic-
ular to it (Fig. 2). The effects of rafting upon creep-
resistance make it by far the more important of the two
cases [29, 2].

The γ /γ ′ lamellae are believed to strengthen the ma-
terial during creep, because this rafted morphology of
the γ ′ phase essentially eliminates γ ′ particle bypassing
[16, 42], which is the creep mechanism normally op-
erative in conventional Ni-based superalloy at elevated
temperatures and low stress [65, 66].

Some experimental observations have provided evi-
dence that the internal misfit stress as well as the applied

2382



Figure 2 Coarsened and elongated (or rafted) γ ′ precipitate particles developed during the creep test at 1173 K/276 MPa for cast IN-100 alloy.

stress is important to the morphological evolution of the
γ ′ rafted precipitates. For example, in a SC-83 single
crystal superalloy after creeping at 600 MPa and 900◦C
[67] and SMSX-4 after creeping at 980◦C and 350 MPa
[68, 69] it has been shown that the γ ′ precipitates are
linked to each other along the [010] orientation into
rafted structures in a side cocavity mode. These results
also show that the alloy composition, the applied stress,
and temperature level have an important influence on
the morphological evolution of the γ ′ rafts.

In studing the directional coaressening of the γ ′
phase, Tian et al. [70] have used two model single crys-
tal nickel based superalloys, possesing a negative misfit
(aγ > aγ ′) under the different creep conditions. When
the stress is applied on the single crystal alloy, an in-
creased strain occurs in the matrix since the stiffness
in the matrix is smaller than that of the γ ′ phase. A
small elastic strain is produced in the 〈110〉 direction
on the (001) crystal plane in the matrix since the 〈110〉
direction possesses a denser atom arrangement and a
higher elastic modulus than the other. While the [100]
and [010] directions possess the lowest elastic modu-
lus as a result of a looser atom arrangement. Therefore,
an elastic strain is easily produced in these directions
under applied stress, which displays the anisotropy of
the single crystal alloy. A schematic illustration of the
coherent misfit at the γ ′/γ interfaces is shown in Fig. 3.
The cubic γ ′ phase is embedded in the γ matrix in aged
condition, and there is the same gradient of coherency
misfit γ ′/γ interfaces for both horizontal and vertical
channels, as shown in Fig. 3a. An approximate value
of the misfit stress σmis is given by [49] σmis = AEδ,
where A is constant, E is the elastic modulus, and δ is

the misfit in the alloy. When the tensile stress is applied,
the lattices of the γ matrix in the horizontal channels
are stretched along the [001] direction, and contrasted
along the [100] and [010] directions (matrix bulk con-
servation). This reduces the misfit stress and the coher-
ent strain at the γ ′/γ interfaces normal to stress axis,
and the zero misfit stress at the interfaces can be calcu-
lated under the action of the effective stresses [71]. By
comparing the stress condition before and after defor-
mation, the change of the coherent misfit stress gradient
was shown to occur at the γ ′/γ interfaces on the (001)
crystal plane. In the mean time, the γ ′ phase near the
interfaces is subjected to an extruding force owing to
the contraction of the γ matrix.

Until recently, all theories of the driving force for
rafting have considered the compositions of the two
phases to be fixed, although accepting that the rate of
rafting might be controlled by diffusion. Nabarro [63]
has analyzed the chemical driving force in superalloys.
His analysis in the elastic regime [e.g. 72, 73] rests on
Eshelby’s recognition that the thermodynamic presure
on an interface has two components: (i) the difference in
elastic energy densities across the interface, and (ii) the
work done by the normal traction across the interface
when the interface moves. Suppose a tensile stress σ is
applied along a cube axis to a superalloy with a posi-
tive misfit, i.e. the lattice parameter of the γ ′ particles
exceeds that of the γ matrix. There is a large increase
in the energy density in the γ channels parallel to the
applied tensile stress, because the material already has
an internal stress in the same direction. There is also
a first order increase in the work done by the trac-
tion across the transferce interfaces. These effects both
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(a)

(b)

Figure 3 Schematic illustration [70] of lattice misfit at different crys-
tal planes: (a) unstressed and (b) under applied stress. Note that due
to symmetry only one quarter of precipitate and surrounding matrix is
shown.

cause a thermodynamic pressure, tending to displace
the corresponding interface from γ ′ towards γ . If the
elastic constants of γ and γ ′ are equal, the two pressures
are equal, and there is no tendency to rafting. If γ ′ has
a higher elastic modulus, the elongation of the γ sheets
parallel to the tensile axis is constrained, the additional
thermodynamic pressure on the lateral interfaces is re-
duced, and rafting occurs by outward displacement of
the transverse interfaces.

When plastic flow occurs, the difference in elastic
constants become negligible. A high energy density
builds up in the transverse γ sheets, and rafting occurs
by outward motion of the transverse interfaces, reduc-
ing the volume which has a high energy density [63].

Microstructure of γ ′/γ superalloy may be dramati-
cally changed by applied constraint-strains. Using the
computer simulation of the microstructural evolution,
it was demonstrated by Li and Chen [62] that γ ′ do-
mains were elongated along the applied tensile strain
and formed a raft-like microstructure. In order to ex-
plain the rafting of γ ′ phase, they used the effective
eigen-strain which corresponds to the effective stress.
In the absence of the applied strain, the eigen-strain is
dilatational strain, which results in a cuboidal morphol-
ogy of the γ ′ phase. When the uniaxial strain is applied

along the y axis, it results a tetragonal growth of the
γ ′ phase with elongation along y axis, leading to the
minimum increase in the elastic energy. An compres-
sive strain, hovewer, results the higher strain along the
x-direction than that of y-direction (applied strain di-
rection) and this makes the γ ′ phase elongated in the
direction perpendicular to the constraint strain. This
simulated rafting arrangement and its correlation with
the applied strains were consistent with experimental
observations [14].

3.3. Elastic energy consideration
3.3.1. Introduction
Precipitate misfit (stress-free transformation strain) is
known to be a critical factor in determining the mor-
phology of isolated precipitates [74–76] and the sta-
bility of two or more precipitates against coarsening
[7, 77–79]. The coherency strains associated with the
misfit result in an elastic interaction between precip-
itates. The sign and magnitude of the interaction en-
ergy is a complicated function of precipitate size, mor-
phology, elastic constants and the intercenter distance
and orientation between the precipitates. Under certain
physical conditions the sign of the interaction energy
may be negative, implying that system elastic energy
can be decreased by aligning the precipitates in a cer-
tain orientation at a certain distance of separation. If
the magnitude of the elastic interaction is large enough,
total system energy may be minimized by retaining a
certain number of precipitates. This stabilizes the pre-
cipitates against coarsening.

Both the elastic and interfacial energies of a precipi-
tate embedded in a solid matrix depend on the precipi-
tate shape. The morphology that minimizes the elastic
energy may be different from that which minimizes
the interfacial energy. Since the ratio of elastic to in-
terfacial energy is proportional to precipitate size, the
particle possesing minimum energy should tend toward
the shape corresponding to the minimum interfacial en-
ergy shape when the particle is small and the minimum
elastic energy shape when the particle is large.

The elastic interaction energy between precipitates
is of great interest in connection with precipitate align-
ment during coarsening. Although there have been
many studies on this subject, most of the works have
been limited either to a homogeneous case [74, 80–
82] wherein the elastic constants of the precipitate and
matrix phases are assumed to be equal, or if inhomoge-
neous to isotropic elasticity [7, 74, 83, 84]. By inhomo-
geneous it is here meant that the elastic constants of the
precipitates and matrix are not the same. However, most
phenomena caused by elastic interactions are observed
in anisotropic materials with different elastic constants
for the matrix and precipitates.

3.3.2. Theoretical background
Several thoretical models which treat the change in elas-
tic energy with particle shape have been published (see
for example [12, 39, 40, 53, 85]). In the discussion
of their observations, Tien and Copley [12] gave only
a qualitative analysis and could not draw quantitative
conclusions regarding the influence of the elastic energy
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on particle shape. A second set of calculations given by
Cahn and Weins [39] is more comprehensive. These au-
thors invoked only the variation in external work done
on the system and neglected the variations in stored
elastic energy. Moreover, Cahn and Weins used an ap-
proach which assumes that stresses and strains are uni-
form both inside the particles and matrix. Sauthoff [40]
used the results of the Eshelby’s theory, but took into ac-
count only the inclusion effect neglecting other terms.
Moreover Sauthoff developed his analysis for the case
where the misfit is a tetragonal distortion and not a pure
dilatation.

Pineau [53] studied the influence of uniaxial applied
stress on the morphology of coherent precipitates dur-
ing ripening by using the Eshelby’s theory of inclu-
sions and inhomogeneities. In this work he calculated
the three components of elastic energy. Then the re-
sults of these calculations were used in discussing the
influence of the ratio between the Young’s modulus of
the precipitates (E p) and that of the matrix (Em), the
misfit parameter (δ) and the applied stress (σA) on the
particle shape. In this study it is assumed that the vol-
ume fraction is constant and sufficiently low so that the
elastic interactions between particles can be neglected.
As shown by Eshelby [74], the variations in total elastic
energy per unit volume (Et ) includes three terms [53]:

Et = Eincl + Eint + Einh (1)

Where Einh is the elastic energy for the inhomogene-
ity effect due only to the fact that, in the absence of
coherency misfit arising from the differences of elastic
constants between the particles and matrix. Eincl is the
elastic energy for the inclusion effect which is related
to the misfit. Eint is the interaction energy due to co-
herency stresses under an external applied stress. Con-
sidering the case when the matrix and particles have
the same elastic constants. Eshelby [74] showed that
the variation of the total energy of the system can be
written Et = Einc + Eint. Tanaka et al. [86] extended
the formalism by Eshelby to the case where the elas-
tic constants of the matrix and precipitate particles are
different. They showed that the variation in energy can
be written as in Equation 1, as a sum of three terms

Einl = (−1/2)σ I
ij eT

i j ; Eint = −σAeT
33;

Einh = (−1/3)σAeT h
33 (2)

σA: applied stress (σA > 0 for a tensile stress; σA < 0 for
a compressive stress). eT

i j : transformation strains for the
inclusion effect.

In dilatation case considered, eT
11 = eT

22 = eT
33, δ =

(ap − am/am), where ap and am are the lattice pa-
rameters of the precipitate particles and of the matrix,
respectively, and eT

i j (i = j) = 0. σ I
i j : stress inside the in-

clusion in the absence of applied stress to the specimen.
These stresses are determined from eT

i j using Eshelby’s
method. eT

33: “equivalent” strains for an inhomogeneous
inclusion, i-e an inclusion with elastic constants differ-
ent from those of matrix. These strains are also de-
duced from eT

i j . eT h
33 : “equivalent” strains for an inclu-

sion equivalent to the inhomogeneity. The equivalence
was defined by Eshelby [74].

Figure 4 Variation [53] of the elastic energy for the inclusion effect
(Einc) with the ratio of Young’s modulus of the precipitates and that of
the matrix (E p/Em ), δ is the misfit between the particles and the matrix.
P, S and N refer to plates, spheres and needles, respectively.

Using the Pineau [53] analysis, the variation of Einl
with E p/Em is plotted in Fig. 4 for the three particle
shapes: plates; spheres; and needles. The results are in
agreement with those given by Robinson [87] who gave
an exact solution to the elastic energy for the problem
of ellipsoidal inclusions with different aspect ratios.
It should be noted for E p = Em , the elastic energy is
independent of the particle shape, as emphasized by
Eshalby [8, 74]. Morover, when the elastic constants of
the precipitates are different from those of the matrix,
an interesting behaviour is observed. For E p/Em < 1,
plates are the most stable, while for E p/Em > 1, the
most stable shape corresponds to spheres.

Concerning the γ /γ ′ system where E p/Em is likely
less than 1, several authors [7, 88] have observed that
during stress-free coarsening large γ ′ particles align
and agglomerate to form shapes which is approxi-
mately considered as plates. However, as pointed out by
Eshelby in the study published by Ardell and Nicholson
[7], other effects such as local elastic interactions be-
tween neighboring particles can intervane.

According to Pineau’s calculation for UDIMET 700
alloy E p/Em

∼= 0.8. Taking also σA/Em = ±10−3 and
δ = +2 × 10−4 which correspond approximately to
the values used by Tien and Copley [6], a value of
σA/Emδ = ±5 was found. As a result of this calculation,
Pineau [53] has shown that a tensile stress gives rise to
plate perpendicular to the stress axis, while a compres-
sive stress leads to needles aligned with the stress axis.
These predicted shape changes are in agreement with
those observed in UDIMET 700 [52].

From the Pineau’s work the following conclusions
can be made: (a) when E p = Em the particle shape is
neither influenced by the applied stress nor by δ. This
result is well known and was emphasized by Eshelby
[8, 74]; (b) for large applied stresses and or low δ the
inhomogeneity effect is the most important. Plates per-
pendicular to the stress axis are elastically the most
favorable. This result agrees with the theoretical analy-
sis by Tien and Copley [12]; (c) when a moderate stress
is applied an interesting influence of E p/Em is ob-
served. In the case where E p/Em < 1 and if, for instance
δ > 0, a tensile stress always favors the plate shape,
while a compressive stress first favors the needle shape
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and then, for higher stresses, the plate shape again. In
the case where E p/Em > 1 and δ > 0, there is a large
range of applied tensile stress where the spherical shape
leads to the lowest elastic energy.

Carry and Strudel [65, 89] investigated the coarsen-
ing under stress of a nickel-base alloy which contains γ ′
particles with δ > 0. They showed that under a tensile
stress the γ ′ precipitate agglomerate into needle shape
particles aligned with the tensile axis, while a com-
pressive stress favors plates perpendicular to the stress
axis. This situation, which is the reverse of that found
in Udimet 700, is in agreement with the behaviour pre-
dicted by Pineau [53] for moderate values of the applied
stress.

Following the difference method of Eshelby [7],
Johnson and Lee [9] studied the elastic interaction en-
ergy between two spherical precipitates embedded in an
infinite matrix of cubic anisotropy as a function of their
distance of seperation and alignment direction.They
considered two separate systems: one consisting of two
misfitting inclusions surrounded by an infinite matrix
while the other is composed of two misfitting inhomo-
geneities. Since the total elastic strain energy of each
system may be writen [9]:

E ′ = E ′
self + E ′

int (3)

where E ′
self is the self energy which is independent of

the relative positions of the two precipitates, and E ′
int

the interaction energy. and,

E = Eself + Eint (4)

Where E ′ is the total energy of the system containing
the two inclusions, with the meaning of the other terms
self-manifest. Subtracting Equation 4 from 3:

E ′ − E = E ′
self − Eself + E ′

int − Eint (5)

or


E = 
Eself + E ′
int − Eint (6)

Figure 5 Elastic interaction energy [9] for two spherical precipitates as a function of distance, R′, in a Ni matrix aligned along: (a) [100], (b) [110],
and (c) [111] directions. Note that W ′ is the strain energy per unit volume for an inhomogeneous case associated with a spherical precipitate in an
infinite matrix, and V is the volume of the system.

Rearranging Equation 6 for E ′
int, the interaction energy

between two misfitting inhomogeneities gives:

E ′
int = 
E − 
Eself + Eint (7)

Therefore, E ′
int can be determined if one can obtain


E , the difference between the total elastic strain en-
ergies for the two systems, 
Eself, the change in self
energy, and Eint, the interaction energy between the two
homogeneous inclusions.

Using the above analysis [9], Fig. 5 was ploted in
which the interaction energies are compared as a func-
tion of distance, R′ in a Ni matrix in the [100], [110], and
[111] directions, respectively. Attractive interaction
along the [100] direction for Ni and Cu matrix should be
expected on the consideration that the [100] direction is
the elastically soft direction for cubic materials in which
the anisotropic factor, H (=2C44 + C12 − C11), is posi-
tive. On the other hand, the [100] direction is elastically
hard [90] and thus should show a repulsive interaction
for the prepitates positioned in this direction.

Ardell [7] analyzed the elastic interaction of γ ′ pre-
cipitate particles in γ with the isotropic assumption.
Although the actual shape of γ ′ particles is a cuboid,
on the basis of an isotropic, spherical precipitate as-
sumption, they predicted that the [100] alignment of γ ′
particles in Ni-6.71 wt% Al alloys is due to the elastic
interaction. The isotropicity argument [91] shows an
an attraction when 
E = E p − Em is negative as in the
case of γ ′ in γ . However, the isotropicity argument can
predict neither a stable configuration nor the particular
orientation relationship. A simple monotonic attractive
force can not cause a stable configuration for particles
because they should attract each other until they con-
tact and thus coarsen [9]. On the other hand, from the
Johnson and Lee’s [9] results based on the anisotropic
elasticity, though it is also assumed spherical shapes
rather than cuboidal shapes, the [100] alignment of
the γ ′-phase particles (Ni3Al) is correctly expected. In
Fig. 5, the [110] and [111] alignments show a repulsive
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interaction, but the [100] alignment for the Ni3Al pre-
cipitates in Ni exhibits an attractive one with minimum
value at R′ ∼= 2.1 (where R′ is of the intercenter distance
between particles). The strength of the elastic interac-
tion was also estimated by Ardell et al. [7]. Based on
the isotropic elasticity assumption, they showed that
the minimum radius of γ ′-particles necessary to break
even with thermal fluctuation at 700◦C is approximately
100 Å. Using the Ardell et al. work at R′ = 2.1 for the
[100] alignment of Ni3Al particles, Johnson and Lee
[9] estimated the minimum radius to be about 20 Å,
which is necessary to stabilize the γ ′-particles against
thermal fluctuation.

Therefore, the prediction made by Johnson and
Lee [9] showed that the analysis of the elastic interac-
tion of γ ′ particles in γ -matrix, in terms of anisotropic
elasticity, show that the [110] alignment yields an at-
tractive interaction with its maximum values at a dis-
tance slighly larger than the particle diameter. These
results confirm the experimental observations of the
[100] alignment of γ ′-particles in Ni-base superalloys
[12], though a spherical shape rather than a cuboid is as-
sumed in the analysis. It was also found that the strength
of the elastic interaction is quite stronger than Ardell
et al. result [7] based on the isotropic assumption. The
reason [9] is that when the particles are far apart, the
interaction energy, E ′

int varies as R′−6 for the isotropic
case, but as R′−3 for the anisotropic case, where R′ is
the distance between precipitate paricles.

Johnson [85] investigated the stability against coars-
ening of two misfitting spherical precipitates subjected
to an applied uniaxial tensile stress. In this work, re-
gions and conditions of precipitate stability were deter-
mined and relationships between surface energy, matrix
and precipitate elastic constants, precipitate misfit and
applied stress were obtained. The bifurcation approach
was shown to be a powerful tool in examining the sta-
bility of elastically interacting precipitates. In this anal-
ysis, the total system energy was calculated using the
following expression [85]

ET = Eel + E M
int + Ea + E A

int + Es + Epot (8)

where Eel is the elastic self-energy of each precipitate
in the absence of an applied stress, Es is the surface
energies associated with each precipitate-matrix inter-
face, E M

int is the interaction energy between precipitates
arising from the coherency strains, Ea is the interaction
energy between each precipitate and in the presence of
an applied stress field, E A

int is an interaction energy be-
tween precipitates arising from the applied stress field,
and Epot is a change in the potential energy of the load-
ing mechanism that can be shown to depend upon the
internal stress.

Precipitate stability thus requires that a variation in
ET with respect to mass exchange be greater than or
equal to zero, i.e. the system energy is a relative or abso-
lute minimum. In the absence of an applied stress field,
system energy [see Equation 8] is expressible as [85]

ET = Eel + E M
int + Es (9)

The terms are in independent of the relative orienta-
tions of the precipitates. If the particles are constrained

to remain spherical R ≡ (r1 − r2)/(r1 + r2) can be
used to describe the relative sizes of the two particles.
Here r1 and r2 are the radii for precipitates 1 and 2,
respectively. As R defines the distribution of mass
between the two particles, stable solutions are deter-
mined from the extrema of Equation 9 with respect
to R. Normalizing ET by 3 φβ/4π , (which does not
affect stability calculations since the volume fraction
of the second phase particle φ is held constant and β is
a function of system elastic constants and precipitate
misfit), differentiating with respect to R and setting
the derivative dET /dR equal to zero gives [85]

0 = 2R(R2 − 1)

(1 + 3R2)5/3
[−Z + M(R, d)] (10)

where M(R, d) is a complicated function of R and d
[85], where d = R′/(3φ/π )1/3 and R′ is the distance
between the centers of the two spheres. Johnson [85]
has introduced a dimensionless parameter Z such that

Z = −4πψint

β

(
8π

3φ

)1/3

(11)

where ψint is the surface energy per unit area. Eel,
being independent of R, makes no contribution to
Equation 10. Thus the extramizing solutions to
Equation 10 are

R = 0 (12a)

R = ±1 (12b)

M(R, d) = Z (12c)

When the applied stress is assumed to be a uniaxial
tensile stress, two parameters determine the stability
of the precipitates for a given distance of separation,
R′, the relative sizes of the precipitates, R and their
orientation with respect to the applied stress. Thus, in
seeking extramizing solutions of the system energy,
the following two conditions must be satisfied,

∂ ET

∂ R
= 0;

∂ ET

∂ X
= 0 (13)

where

ET = Ea + E A
int + Es + Epot

and X = cos(θ ) has been chosen as the parameter
defining the relative orientation of the precipitates
with respect to the applied uniaxial tensile stress. Here
θ is defined as the angle between the line joining the
centers of the two precipitates and the direction of the
applied uniaxial tensile stress.

The extramizing solution given by Equation 12c is
always unstable while R = 0 is stable only for those
value of Z less than a critical value of Z , Z ′′′

c , defined
by the bifurcation point. The bifurcation point can be
determined exactly from Equation 12c by setting R = 0
yielding

Z ′′′
c = 12(12d4 + d2 − 3)

(4d2 − 1)5
(14)

Since the right side of Equation 14 is positive for all
physically values of d ≥ 1, from Equation 11 it follows
that β must be negative.
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Figure 6 Bifurcation diagram [85] demonstrating the stability against
coarsening of two misfitting precipitates. Solid lines depict stable so-
lutions. For large Z , R = ±0.2 are the only stable solutions. Here
Zc = 0.22.

The bifurcation diagram depicted in Fig. 6 is repre-
sentative of the stability of two misfitting spherical pre-
cipitates under the isotropic conditions assumed. The
singularity in the behavior of the energy minimum is
called a bifurcation [92]. The use of well known proper-
ties of bifurcations can greatly increase the understand-
ing of the behavior. The bifurcation diagrams examine
precipitate stability against coarsening in terms of both
the mass distribution between precipitates, R, and the
particle orientation with respect to the tensile axis, X .
It is also possible to examine the stability of the precip-
itates with respect to R only, for different levels of ap-
plied stress. A small precipitate volume implies a large
value of Z for which the only stable solution existing
is R = ±1. Thus the system would be unstable with re-
spect to coarsening. For precipitates of larger size, the
associated volume of precipitates increases and Z de-
creases. Once Z < Zm

c (the bifurcation point) there are
two separate stable solutions, R = 0 and R = ±1.

Fig. 7 examines the interaction energy of two misfit-
ting spherical precipitates subjected to an applied uni-
axial tensile stress as a function of intercenter distance
and orientation. The total interaction energy is the sum
of the interactions owing to the misfit strains, E M

int and
applied stress, E A

int. The interaction energy is normal-
ized to 3ψintφ/32π and the intercenter distance to the
diameter of the precipitates when R = 0. The sign and
magnitude of the interaction depends critically on the
orientation of the precipitates with respect to the tensile
axis. Energy minima are found for certain orientations
intermediate to θ = π/4 and θ = π/3. Interaction ener-
gies as displayed in Fig. 6 are strong functions of the
applied stress and precipitate morphology [93].

4. Splitting of γ′ particles
Although the classical LSW theory and its subsequent
modifications have succesfully explained the ripening
behaviour of precipitates in many two phase alloy sys-
tems, there are experimental results on the splitting of
the precipitate particles which can not be explained by
the conventional Ostwald coarsening theories.

Figure 7 Normalized interaction energy for two misfitting spheres of
equal radii subjected to an applied tensile stress [85]. The energy is nor-
malized to and the intercenter distance to the diameter of the precipitate.
The parameter S = 0.9.

A new idea which has been developed [34] on the
basis of the so-called “bifurcation theory” [85, 94] in-
dicates that, once the precipitate morphology is finely
developed, the individual particles hardly coarsen be-
cause such a fine microstructure is itself energetically in
an extremely stable state as a result of the strong elastic
interaction between the particles, i.e. the particles do
not need to coarsen or split in order to decrease their
energy.

The splitting process occurs in various nickel-base
alloys including Ni-Si, Ni-Al-Si and Ni-Al-Ti systems.
It was observed that cuboidal γ ′-precipitate (Ni3X) in
some Ni-base alloys splits into two or eight small par-
ticles (or an group of eight cuboids, i.e., an ogdoad)
with a progressive increase in size [30, 95, 41] (see for
example Fig. 8a).

The experimental fact of splitting, in spite of increas-
ing the surface energy, seems surprizing. However, this
may be understood if it is assumed that the increment in
the surface energy is compensated for by the elastic in-
teraction energy between the small particles produced
by the splitting. Splitting proceeds by atomic diffusion
which requires both time and driving force. Therefore,
splitting really occurs at a certain critical size L∗∗ which
is larger than L∗. It should be pointed out that the split-
ting phenomenon is observed only when the γ ′ precip-
itate particles are sparsely distributed in the γ matrix
[30, 33, 41]. It was observed [34] that the γ ′ split into
an ogdoad takes place in the Ni-Al alloy with a large
|
∗|, where 
∗ is the ratio of the γ –γ ′ lattice misfit to
the surface energy of the γ ′ particles in the γ matrix
(
∗ = δ/ψint).

Two types of splitting transitions have been observed
in cubic materials: the splitting of an isolated cuboid
into either two parallel platelike particles (doublet [33]
or eight smaller cuboids (octet)) arranged in a cubic
geometry with their faces parallel to the {100} cube
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(a)

(b)

Figure 8 Effects of elastic strain, surface and elastic interaction energies on the splitting process of γ ′ particles in nickel-base superalloys.
(a) Transmission electron microscopy image of γ ′ precipitate morphologies in DS 200 + Hf alloy. Note that the single γ ′ particles are splitting
into ogdoads. (b) Comparison between the total energies of a γ ′ particle in the Ni-Al alloy before and after the split into a doublet or into an ogdoad
calculated on the basis of microelasticity theory. E1, E2 and E8 are the total energies in a single state, in a doublet state and in an ogdoad state
respectively. The energetically stable shape changes from a single particle to a doublet to an ogdoad with increasing particle size during growth [34].

directions [34]. These transitions have been analyzed
in terms of the interfacial and elastic interaction ener-
gies between the misfitting particles. Calculations for
the Ni-Al system indicate that the system energy is min-
imized if the morphology of the particles changes pro-
gresively from a cube to a doublet to an octet with
increasing total particle volume [96, 34]. These cal-
culations are qualitatively consistent with existing ex-
perimental observations, although the transition from
doublet to octet is not always observed [34].

Doi et al. [34] have studied the shape changes of
γ ′ precipitates in nickel-base alloys during continuous
cooling by means of transmission electron microscopy.
The energetically stable shape of the γ ′ precipitates was
calculated numerically with a computer on the basis of
microelasticity theory. In calculating the energies, Doi
et al. [34] have considered the following three cases:
(a) a γ ′ particle [of volume fraction φ and surface area

S(P)] which is a single inhomogeneous ellipsoid of
revolution (with an aspect ratio P) and exist in an infi-
nite γ matrix that is elastically anisotropic, (b) a single
γ ′ particle which splits into two small ellipsoidal γ ′
particles [of volume φ/2 and surface area S′(P)], and
(c) a single γ ′ particle which splits into eight small el-
lipsoidal γ ′ particles [of volume φ/8 and surface area
S′′(P)]. E1, E2, and E8, which are the total energies
for the three cases (a), (b), and (c) respectively, are
expressed by the following Equations [34]:

E1 = φEincl(P) + S(P)ψint (15)

E2 = 2
φ

2
+ 2S′(P)ψint + Eαβ

int (P) (16)

E8 = 8
φ

8
Eincl(P) + 8S′′(P)ψint + E8(P) (17)
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where Eincl(P) is the elastic energy of the ellipsoid,
ψint the surface energy density of the ellipsoid, Eαβ

int (P)
is the elastic interaction energy between the two ellip-
soids produced by the split into a doublet and E8(int)(P)
is the elastic interaction energy between the eight ellip-
soids produced by the split into an ogdoad. The details
of the procedure for calculating the energies have been
given elsewhere [33, 41]. Fig. 8b shows the changes in
the energy state of γ ′ precipitates before and after the
splits calculated against the diameter L of the single
particle before the split for the Ni-Al alloy [34]. When
the particle remains small in size, E1 is the lowest and
the particle can stably exist as a single particle. For the
particle larger than L∗

2, E2 becomes the lowest and the
doublet is the energetically favorable shape, which sug-
gests the possibility of splitting into a doublet. However,
when the particle size becomes larger than the critical
size L∗

8, E8 becomes the lowest and the energetically
favourable shape changes from a doublet to an ogdoad.
The experimental studies on Ni-Al alloys indicate that
the particle size at which the split into a doublet is re-
alized is about 0.25 µm (=L∗∗

2 ) [30, 41]. Doi et al.
analysis [34] indicates that the size at which the split
into an ogdoad is more than 0.5 µm (=L∗∗

8 ) at least.
It is considered [34] that the difference between the
calculated L∗

2 (or L∗
8) and the experimentally obtained

L∗∗
2 (or L∗∗

8 ) arises from the kinetics of splitting. An
energy difference between E1 and E2 at L∗∗

2 (i.e. 
E
in Fig. 8b) is regarded as the driving force for splitting
a single particle into a doublet. This suggests that the
splitting process does not appear until a driving force
of 
E has arisen.

The elastic interaction energy results from the over-
lap of strain fields which accompany coherent particles.
Once the particles lose their coherency, the splitting
phenomenon does not take place because of the an-
hiliation of elastic interaction energy. Further splitting
occurs only when the energy diffrence between E2 and
E8 becomes large enough to split further before the
doublet loses coherency.

Doi et al. [34] has summarized the theoretical and
experimental results for the Ni-Al systems: (a) the γ ′
precipitate cuboid splits into eight small cuboids during
slow cooling but does not split during fast cooling. In the
slow cooling case the γ ′ particles are able to grow larger
with decreasing temperature and take the energetically
stable state by splitting when their size exceeds a critical
value L∗∗. In the fast cooling, however, a large number
of small γ ′ particles are closely aligned along 〈100〉.
Such a finely developed microstructure is extremely
stable in itself and the particles do not need to grow or
split in order to decrease their energy state, (b) when
the individual particles grow to a critical size L∗∗

8 , the
number of particles in the slowly cooled alloys becomes
much larger than that in the aged alloys; this results
in the diffrence in the density of the unit assemblies
formed by the splits.

5. Ostwald ripening
The rate-limiting process in diffusion-controlled coars-
ening is interparticle diffusion of solute. The chemical-
potential gradients that drive this diffusion arise be-

cause capillarity causes the chemical potential of solute
to be lower in larger particles.

The precipitation of a new phase from a supersatu-
rated solid solution involves three steps (in a contin-
uous precipitation process): (a) Stage 1, nucleation of
the new phase; (b) Stage 2, growth of nuclei using the
matrix elements until the matrix reaches its equilibrium
concentration of solute; and (c) Stage 3, coarsening of
the precipitates through the Ostwald ripening process
or competitive growth (selective growth).

However, at least two processes occur simultane-
ously; 1 and 2 or 2 and 3. It is well known that a distri-
bution of immobile particles in a solid matrix tends to
lower its interfacial free by transport of matter from
the smaller to the larger members of the distribution,
thereby diminishing the total particle number but in-
creasing the average particle size. In other words, in
stage 3, the surface energy of the precipitate is reduced
by coarsening; small ones dissolve and large ones grow
at the expense of smaller ones. This coarsening process,
known as competitive growth or Ostwald ripening [11],
clearly follows kinetics which are in general dependent
upon the nature of the particle dispersion, provided that
the rate-limiting step is other than the transfer of matter
across the particle-matrix interface.

The equilibrium solute concentration Cm(ρ) in the
matrix next to the phase boundary to a precipitate of
a curvature radius ρ is in general given by the Gibbs-
Thomson equation (in general) [97]:

Cm(ρ) = Cm(ρ → ∞)

[
1 + 2ψint�

ρRB T

]
(18)

The Gibbs-Thomson equation is the basic equation
which form the beginning of the analysis, where ψint is
the specific interfacial energy of the matrix-precipitate
boundary, � the molar volume of the precipitate, RB

the Universal gas constant [8.314 × 103 J/(K · kmol)],
Cm(ρ → ∞) the solute concentration in equilibrium
with a plane interface, and T the absolute temperature.

Since Cm decreases with ρ, small particles act as
solute sources and large particles as sinks. Solute atoms
diffuse from the small particles to the large ones.

Ostwald ripening or coarsening, is a phenomenon
that occurs in a wide-range of two-phase systems, in-
cluding liquid-liquid, solid-liquid, and solid-solid mix-
tures. Much theoretical and experimental work has been
done on coarsening driven only by interfacial energy,
which governs coarsening in, for example, liquid-liquid
systems. In solid-solid systems, however, the morphol-
ogy of particles is determined in part by the elastic
energy that arises from the particle –matrix lattice mis-
fit or an applied stress. The total elastic energy in solid
systems can be of the same order as the total interfacial
energy, and quantitatively from coarsening driven by
interfacial energy alone.

Greenwood [98], Liftshitz and Slyozov [99] and
Wagner [97] (i.e., the LSW theory) have analyzed the
diffusion nature of Ostwald ripening process, under the
assumptions of negligible volume fraction and spher-
ical particles. The process is such that the particle’s
coarsening is due to the diffusion of the forming pre-
cipitate elements through the interface with the matrix.
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The coarsening law can be written [97, 99] as

R̄3(t) − R̄3(0) = K t (19)

where R̄(t) and R̄(0) are the sizes of the particle at time
t and 0, respectively and the growth parameter, K is
given by

K = 8

9

ψint�
2 DCe

RB T
(20)

with ψint being the surface energy per unit area of the
matrix-particle phase boundary (J m−2), � the molar
volume of the precipitate (m3 mol−1), D the diffusion
coefficient of the constitutive particle element in the
matrix (m2s−1), Ce the matrix concentration of such
element in equilibrium (mol m−3), RB the gas constant
and T the temperature.

This theory of diffusion-controlled particle coarsen-
ing (LSW), can be succesfully applied when the precip-
itate volume fraction is small, approaching zero [22].
This is not the case for Ni-based superalloys, where the
volume fraction is as high as 50% and up to 70 vol%
for the ultimate designs of last generation superalloys
as CMSX2 or CMSX4 [100]. In addition to this, there
exists a consensus on the fact that the elastic coherency
stresses induced by the lattice parameter mismatch be-
tween the precipitate and matrix, influences the be-
haviour during the coarsening, and has significant im-
portance when changes in the precipitate morphology
appear (41, 101]. The influence of neighbourhood par-
ticles over the coarsening behaviour was also analyzed
[102, 103]. The extension of the LSW theory to higher
volume fractions has been addressed by numerous au-
thors [22–24, 104 –116) and is a field of active interest.

6. Ostwald ripening kinetics of γ′ precipitates
in nickel-base superalloys

It is well known that the γ ′-precipitate morphology is of
paramount importance in improving the high tempera-
ture strength of nickel-base superalloys. Therefore, one
of the important subjects for designing and developing
new types of such precipitation-strengthened superal-
loys is how to control the morphology of γ ′ particles
reduces the creep resistance, because the overaged mi-
crostructure allowed deformation to occur by particle
by-passing [74, 8, 28, 58]. On the thermal exposure
above about 0.6Tm (Tm being melting temperature in
K ), the γ ′ precipitate ripens (increases in sizes) at a sig-
nificant rate, facilitating dislocation by-passing. Thus
measures that minimize ripening will help retain long-
time creep resistance. Therefore, the γ ′ coarsening can
be retarded by changing the �int, Ce and D parameters
in the coarsening rate constant K (Equation 20).

6.1. The growth kinetics of γ ′-precipitates
In the past there have been much work done on the
coarsening kinetics of γ ′-precipitate in simple Ni-Al
binary alloys and commercial alloys (7, 12, 17, 19,
117–136). In all these studies the mean particle ra-
dius R̄ of the γ ′-precipitates in various Ni-base su-
peralloys was a function of coarsening time, being in-
dependent of the applied stress or accumulated strain
and the Ostwald ripening particle growth kinetics may

be described by the various theories developed for
coarsening (see Section 5). Actually, in coarsening phe-
nomenon there are two kinds of theories, namely, the
diffusion-controlled growth, and the interface-reaction
controlled growth. The general equation for the com-
petitive growth can be written as

R̄n(t) − R̄n(0) = K t (21)

where the reaction is diffusion controlled rather than
interface controlled, the predicted value for n is 3 for
coarsening in the matrix, whereas in the interface re-
action controlled growth n is 2. However, in the Ni-
base superalloys the diffusion-controlled rather than
the interface-controlled reactions take place [7]. There-
fore, in Ni-base superalloys the growth kinetics of γ ′-
precipitate can be predicted with the following form of
equation:

R̄3(t) = R̄3(0) + K (φ)t (22)

where φ is the volume fraction of precipitates. As men-
tioned in Section 5, in all the theories of the Ostwald
coarsening rate constant K (φ) would have the form

K (φ) = A(φ)DeffCe�int�
2

RB T
(23)

where Deff is the “effective” diffusion coefficient, �int
the particle/matrix interface energy, � the molecular
volume of the precipitate material, RB the universal
gas constant, T the absolute temperature, and A(φ) a
dimensionless constant.

The value of A(φ) constant is a dimensionless con-
stant of proportionality whose value is calculated in
the Ostwald ripening theories. The magnitude of the
dimensionless constant A(φ) depends on the volume
fraction of precipitate; the values yielded by the dif-
ferent theories for some volume fractions φ are shown
in Table II [19]. The LSW theory was developed for
negligible volume fraction. It has proved reasonable so
far for these early authors (in the LSW theory) to have
ignored volume fraction since experiments show that it
has only a small effect, and the theories developed to
include the effect of volume fraction (i.e. the MLSW,
LSEM and BW theories) manifest a trend, as is evident
in Table II.

Equation 22 has been found to be in very good
agreement with measurements performed for binary
Ni-Al (Ni-rich) [7, 117, 119, 136] and for multi-
component commercial and experimental superalloys
[19, 118, 123, 135, 137–141]. Fig. 9 gives an example
of good agreement between the experiments [142] and

TABLE I I Values of A(φ) and �int in Equation 23 [Ref. 19]

A(φ)

φ(%) LSW MLSW LSEM BW

2 8/9 = 0.89 2.37 1.02 1.16
5 0.89 3.49 1.09 1.44
10 0.89 5.06 1.17 1.75
20 0.89 7.90 1.30 2.19
40 0.89 13.25 1.54 2.98
60 0.89 18.44 1.84 3.69
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T ABL E I I I Data for plotting Fig. 10 [19]: all compositions in wt% (1 wt% = 3300 mol m−3)

Amount of γ ′ φ K (φ) Al content
Alloy (vol%) T (K) (m3 s−1) to (ks) of matrix (C)

Ni-5.68 Al 9 773 8.94 × 10−15 0 4.90
3 873 1.40 × 10−12 0 5.24

Ni-6.32 Al 13 923 4.85 × 10−12 0 5.40
2 1073 1.52 × 10−9 0 6.13

Ni-6.71 Al 20 898 2.32 × 10−12 −4 5.30
12 1023 1.72 × 10−10 2.5 5.88
8 1048 3.89 × 10−10 −1 6.03

Ni-7 Al 9 1073 1.10 × 10−9 0 6.13
Ni-8 Al 27 1073 1.06 × 10−9 −14.5 6.13
Ni- 9 Al 44 1073 1.20 × 10−9 −25 6.13
Ni-9.9 Al 60 1073 1.30 × 10−9 −101 6.13
Ni-17.5 Cr-3 Al 23 1023 6.78 × 10−11 0 1.56
Ni-17.3 Cr-2.7 Al 18 1023 1.14 × 10−11 0 1.58
Ni-16.9 Cr-3.4 Al 27.5 1023 5.11 × 10−11 100 1.68
Ni-14.2 Cr-4.9 Al 42 1023 5.11 × 10−11 100 2.28
IN 738 40–45 1023 4.89 × 10−11 1.07

1073 2.0 × 10−10 1.07
1123 7.6 × 10−10 1.07

IN 738 1373 100 × 10−9 −20 1.42

Figure 9 Particle size versus annealing time t [142] for NIMONIC
PE 16. TA annealing temperature; r mean particle radius derived from
transmission electron microscopy, Rg radius of gyration derived from
small angle neutron scattering. •: r, TA = 949, 1029, 1079 and 1119 K,
�: r, TA = 943, 1023 and 1113 K, �: r, TA = 973 K, �: rg, TA = 973 K,
∗: rg, TA = 977, 1021 and 1068 K, +: rg, TA = 1023 K.

Equation 22. Here the mean particle size R̄ is plotted
against t1/3 for NIMONIC PE16.

If Equation 23 is rearranged [19] as

K (φ)T

Ce
= A(φ)D�int�

2

RB
1054 (24)

then K (φ) has the convenient unit of m3 s−1 when all the
quantities are in standard SI units in Equation 24. The
right hand side of Equation 24 can reasonably be taken
as dependent only on temperature through D, suggest-
ing that log[K (φ)T/Ce] be plotted against (1/T ). In his
review article Mclean [19] used the data in Table III and
obtained Fig. 10. As can be seen in this figure the data
used in Table III is accordance with Equation 24. From
this figure the following equation has been obtained:

K (φ)T

Ce
= 6.88 × 1011 exp

[
−32520

T

]
(25)

Since the left hand side of Equations 24 and 25 are the
same the right hand side of these equations must be

Figure 10 Plot [19] relating growth rate K (φ) to temperature T and
composition Ce in mol m−3 (for data see Table III).

equal. If the Equation 25 is rearranged as

K (φ) = 2.3 × 1015

T
Ce exp

[
−32520

T

]
(26)

where Ce is expressed in wt% in Equation 26. In
Equation 24 the values for parameters are � = 2.716×
10−5 m3 mol−1 and for Al diffusion in Ni is given by
[143]

D = 1.87 × 10−4 exp

[
−32200

T

]
(m2 s−1) (27)

Therefore, putting these values into Equation 24 the
temperature dependence of Equation 25 has been ob-
tained, which agrees with Fig. 10 within experimental
error. Note that in Equations 25 and 26 it is assumed
that Al diffusion is to be the coarsening rate control-
ling factor [19]. It was believed [19] that in Fig. 10
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the plot can be used over a wider range of tempera-
ture than has been used in the figure. As pointed out by
McLean [19], differentiating between a cubic (R̄1/3)
and square (R̄1/2) dependence of the average particle
size with time (t) is difficult. McLean has reviewed
many of the experimental growth data on γ ′ in Ni-base
superalloys and by converting data obtained at different
ageing temperatures to equivalent times at one temper-
ature. He concludes that the cubic rate law fits the ex-
perimental data better than the square rate law, confirm-
ing again that coarsening in nickel-based superalloys is
volume-diffusion controlled.

By replacing K (φ) in in Equation 22 by its value in
Equation 26, the time t under a given combination of T
and Ce Mclean [19] has recalculated as equivalent time
teq under some chosen Teq and Ceq, thus he has brought
all the growth data to a common time base:

teq = (t − to)
TeqCe

T Ceq
exp

[
32520

(
1

Teq
− 1

T

)]
(28)

Teq and Ceq were selected as 1023 K (750◦C) and 1 wt%,
respectively, and then teq was calculated for the indi-
vidual data points (ā, t) presented in Table III. By this
means many data points were brought to a common
time base in accordance with the theory that produces
Equation 22. On plotting as ā versus t1/3

eq (ā being half
the mean length of the γ ′ particles edges, and has the
unit of m) should yield a straight line if the γ ′ particles
have grown as predicted by the Ostwald ripening theo-
ries. These data are plotted in Fig. 11 and do fall close to
the straight line. The equation of the graph in Fig. 11 is

ā = 0.329 × 10−9(teq)1/3 (29)

ā3 = 0.0356 × 10−27teq (30)

Of course, Fig. 11 and Equation 29 should be taken
as an approximation to the experimental result that is
not quite identical with that represented by the plot in
Fig. 11.

Mclean [19] has pointed out that Equation 22, with
K (φ) given by Equation 26 can be used to predict

Figure 11 Particle size ā versus t1/3
eq plot [19].

Figure 12 Distribution function g of reduced particle radii (130) ρ/r
in Nimonic PE 16. Heat treatment: 21 h at 1119 K, γ ′-particle radius:
27 nm; foil thickness: 81 nm, (—): g(ρ/r )

LSW , (− − − −) : g(ρ·r )
LSW adjusted

for particles which are visible in the transmission electron microscope
though their centres lie outside of the thin foil.

growth over service lifetimes in the case of relatively
Al-rich nickel-base superalloys.

6.2. Particle size distribution
of γ ′-precipitates

Superalloy specimens heat treated for optimum strength
have relatively large particle radii. Therefore the parti-
cle dispersion of such specimens is rather stable against
further coarsening during the service life. Fig. 12 shows
the distribution function g of reduced particle radii R/R̄
in Nimonic PE 16, together with the LSW theoreti-
cal curve; it is independent of time t . The distribution
function for the LSW theory [gLSW(ρ)] is in reasonable
agreement with experiments. However, experimental
distribution functions are often broader than gLSW. Var-
ious investigators have tried to eliminate assumption,
i.e. to treat the more realistic case of finite and even of
large volume fractions. Finite values of volume fraction
φ lead to a broadening of the distribution function of
particle radii(see Section 5).

Hoopgood et al. [130] have investigated coarsening
kinetics of single crystal SRR99 superalloy. They have

Figure 13 The relative particle size distribution predicted by the LSW
theory. The quantity ρ is the linear particle size divided by the mean size
(R/R̄) and ρ = 1.5 R̄ is the maximum value allowed.
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Figure 14 Size distribution [130] of γ ′-precipitate produced by aging at 1100◦C for various times in single crystal SRR99 superalloy: distributions
predicted by LSW theory for mean precipitate size equal to experimental value are shown as dashed lines. (a) Unaged; (b) 0.167 h; (c) 0.5 h; (d) 1 h;
(e) 1.5 h; (f ) 4 h; (g) 11 h; (h) 72 h.

measured the precipitate size from the microstructures
produced by aging at 1100, 1000, 900, and 800◦C. The
experimentally determined values for the mean size and
theoretical distributions predicted by the LSW theory
(Fig. 13) for precipitate coarsening are shown in Fig. 14.
As this figure shows there is good correspondence
between the shapes of the experimental distributions
and those predicted by the LSW theory at each tem-
perature after short aging times. After long aging times
the experimental distributions become broader than the
theoretical distributions and in particular some precip-
itates have sizes greater than 1.5 of the mean, which
is not permitted by the LSW theory. A broadening of
the right-hand edge of the size distribution function has
been predicted by those theories of Ostwald ripening
which include modifications to take account of precip-
itate volume fraction.

6.3. Application of Ostwald ripening theory
to the γ ′-precipitate growth

Molen et al. [134] have investigated the particle coars-
ening kinetics of γ ′-precipitates in Udimet 700 at differ-
ent aging temperatures. For this purpose the following
equation was used:

[R̄3(t) − R̄3(0)]1/3 = k(φ)t1/3 (31)

The coarsening characteristics of γ ′ has been in-
vestigated extensively in the Ni-Al system [i.e.
7, 11, 119, 144]. The particle growth data for the Ni-
base superalloys containing 6 wt% Al showed that the
coarsening behaviour of γ ′ was in good agreement with
the LSW theory. The LSW theory has also been suc-
cessful in describing the coarsening characteristics of
Ni-Ti [11, 119] and Ni-Si [11, 145] alloys. However, in
Ni-Si alloy after 16 hours of ageing at 775◦C, a depar-
ture from the t1/3 kinetics was observed. This deviation
from linearity was associated with the loss of coherency
of the γ ′ particles.

Following Ardell [7, 119], for cuboidal particles R̄
was replaced by ā/2 where ā is the average length of a
cube edge, i.e.

Figure 15 The t1/3 dependence of average particle size (ā/2 versus t1/3)
[134].

[(
ā

2

)3

−
(

āo

2

)3
]1/3

= k(φ)t1/3 (32)

The particle data were therefore presented as a plot of
[(ā/2)3 − (āo/2)3]1/3 versus t1/3 in Fig. 15. The data are
consistent with a linear relationship and thus with the
Ostwald ripening theories in which large particles grow
at the expense of small ones (selective or competitive
growth) by a diffusion-controlled mechanism.

The slope of each curve in Fig. 15 is a tempera-
ture dependent rate constant k(φ) which is given in
Equation 33, which was used by Molen and co-workers
[134], and is given below:

k(φ) =
[

8

9

ψint�
2 DCe

RB T

]1/3

= K 1/3(φ) (33)

The Equation 33 can be rearranged to give:

Ln

[
k3(φ)

(
T

Ce

)]
= Constant − Q

RB T
(34)

Thus plots of Ln [k3(φ)(T/Ce)] versus (1/T ) yield Q
from the slope and Do from the intercept. The activation
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T ABL E IV Data for the determination of the activation energy Q and
the constant A of Equation 34 [134]

Temperature k3(φ), k3(φ)T/Ce

(T ) (K) (m h−1/3 × 1010) Ce (at.%) (m3 K h−1 × 1030)

1144 156 6.60 6.61
1172 202 6.76 14.40
1200 286 7.35 37.90
1227 328 7.48 57.60
1255 420 8.05 115.5
1283 503 8.92 183.0
1311 625 9.78 328.0
1339 744 10.31 532.0
1366 864 11.18 785.0

energy (Q) for coarsening for γ ′-precipitates in Udimet
700 was calculated from the plot of Ln [k3(φ)(T/Ce)]
versus (1/T ) given in Fig. 16 (the data [134] for the plot
is given in Table IV). The values of Ln [k3(φ)(T/Ce)]

Figure 16 Determination of the activation energy (Q) for coarsening
[134].

Figure 17 Average γ ′ particle size (ā/2) versus time for temperatures [134] from 1033 to 1366 K (volume fraction of γ ′ from 38 to 14%).

vary linearly with (1/T ). The values of k(φ) for 1255 K,
1311 K, and 1366 K were obtained by measuring the
slope of the particle coarsening curves in Fig. 15. From
Fig. 16 the activation energy for Udimet 700 was mea-
sured to be 269.6 kJ/mole (64.5 kcal/mol). Despite the
complex nature of this alloy, the activation energy cor-
relates well with that for diffusion of Al or Ti in Ni
(269.2 and 267.9 kJ/mole, respectively) [7, 121] and
to coarsening of γ ′ precipitates in simple binary Ni-Al
alloy [269.2 kJ/mole].

For Udimet 700 the rate of coarsening can be given
by, as in Equation 26:[(

ā

2

)3

−
(

āo

2

)3]1/3

= A1/3t1/3
(

Ce

T

)1/3

× exp

[
− 64500

2.303RB T

]
(35)

where A = 12.7 × 10−4 (m K/h1/3) for concentration Ce

of (Al + Ti) in at. pct. solute. This information (Equa-
tion 35) is sufficient for evaluating the parameters in
the coarsening equation.

A series of particle size versus time plots using Equa-
tion 34 are presented [134] in Fig. 17 for temperatures
from 1033 to 1366 K. Such a chart (Fig. 17) can be used
to predict the effect of thermal exposure upon the vol-
ume fraction and particle size of the γ ′ precipitate or as
a guide to heat treatment. For example, one could pro-
duce a distribution of γ ′ particles 18 × 10−8 m (1800 Å)
(on a cube edge (ā/2 = 900 Å = 9 × 10−8 m) where the
amount of γ ′ varied from 14 vol% (1.2 h at 1366 K) to
38 vol% (65 h at 1172 K).

6.4. Evaluation of ψint, D, Ce,
and Q parameters

It was shown [11, 146, 147] that studies of particle
coarsening can be exploited to obtain reliable numer-
ical values of several parameters commonly encoun-
tered in solid state precititation kinetics. The parame-
ters of interest are: (a) the precipitate-matrix interfacial
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free energy (�int), with the understanding that �int may
be a function of the orientation of the interest; (b) the
“effective” diffusivity of the component species of the
particle, Deff, which generally differs from the solute
diffusivity because of certain physical constraints that
may act upon a particle growing in a solid matrix [148];
and (c) the solubility in equilibrium with a particle of
infinite size, Ce. Specifically, experimental values of
�int and Deff can be determined directly by the meth-
ods described by Ardell. As desribed below, the values
of Deff obtained for Ni-Al and Ni-Ti alloys [11] agreed
fairly well with the extrapolated values obtained in-
dependently from standard high temperature diffusion
experiments [143].

In order to extract values of these parameters from
coarsening data it is necessary to measure indepen-
dently both the average particle size and the average
concentration (C) of solute in the matrix as a function
of ageing times.

In the LSW theory the average particle size as a
function of time can be described as (see Section 5,
Equation 19):

R̄3(t) = R̄3(0) + K t (19)

and K is a coarsening rate constant given by

K = 8

9

ψint�
2 DCe

RB T
(20)

The average concentration, C , of solute in the matrix
is related to the average particle radius R̄, by the Gibbs-
Thomson equation

C − Ce = 2�intCe�

R̄ RB T
(36)

The following is the Ardell’s treatment [146, 149] about
the variation of average solute concentration (C) of the
matrix: Letting 
 = C − Ce, the relationship between

 and t is obtained simply by rewriting Equation 36 for
R̄ and substituting the result into Equation 19, whereby
we obtain

1


3
− 1


3
o

= χ t (37a)

where 
o = Co − Ce (37b)

χ = D(RB T )2

9ψ2
intC

2
e �

(38)

At long aging times the asymptotic behavior 1/
o is
negligible compared with 1/
3. So that Equation 37a
reduces [146, 149] to

1


3
∼= χ t

C − Ce
∼= (χ t)−1/3 (39)

Ce is the equilibrium concentration of solute in the ma-
trix. The parameter Ce is a true thermodynamic equi-
librium solubility because it defines the solute content
of the matrix in equilibrium with a particle of infinite
size. This is the state of the system that will exist at
t = ∞. To obtain Ce at a given temperature, it is nec-
essary only to plot C versus t−1/3 and extrapolate the
curve to t−1/3 = 0.

According to the theory of diffusion controlled coars-
ening, the average concentration of solute C , in the ma-
trix phase varies with time t according to Equation 39.
In other words, Equation 36 describes the asymptotic
variation of the solute content (C) of the matrix with
ageing time.

Equation 39 is an approximation [146] which is not
accurate at the beginning of the coarsening process.
However, the error involved in Equation 39 over whole
range of aging times is generally small. Equation 39 is
particularly convenient to use for the purpose of evalu-
ating Ce and χ .

The parameters �int and D are readily evaluated
from the experimental values of χ−1/3 and k1/3(φ) (the
slope of the plot in Fig. 15) according to the following
equation [119, 146]:

�int =

[
k(φ)

χ

]1/3

RB T

2Ce�
(40)

D = 9

4

[k2(φ)χ ]1/3

�
(41)

In summary, the values of �int and D can be obtained
if the variations of the mean particle radius R̄ and the
average concentration of the solute C in the matrix as a
function of time can be measured independently using
the experimentally determined values of K and χ .

It is useful to illustrate the evaluation of �int, D and
Q and Ce parameters because these parameters are very
important in the study of Ostwald ripening. Ardell [121]
has studied the growth kinetics of the γ ′ precipitate in
a Ni-8.74 wt% Ti alloy. The variation of the titanium
content of the nickel-rich matrix is shown as a function
of aging time at 965 K, 866 K, and 796 K in Fig. 18,
which is consistent (apart from the concentration units)
with the theoretical equation (Equation 39). The val-
ues of WTi (in wt%) approaches the predicted linear
dependence on t−1/3 after aging times that are clearly
temperature dependent: ∼=20 min. at 965 K; ∼=1 hr at
866 and ∼=16 h at 796 K. It is emphasized that these
aging times do not necessarily represent the times at
which coarsening actually commences, because Equa-
tion 39 is an approximation which is not accurate at
the beginning of the coarsening process. Let us now
evaluate the Ce and χ using Fig. 18 (or Equation 39).
The data in Fig. 18 indicates the linear regions, which
were least-squares analysed to obtain values of the in-
tercepts (Ce or We) and slopes (χ−1/3) of the curves.
The values of these parameters are given [121] in
Table V.

According to Equation 39 the activation energy for
the coarsening process can be obtained by plotting

TABLE V Results [121] of the least-squares analysis of the data in
Fig. 19

T (K) χ−1/3 (mole s1/3 m−3 × 1024) We (or Ce) × 102

796 4.050 × 10−1 6.633
866 1.235 × 10−1 7.268
965 3.455 × 10−2 8.123
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Figure 18 The variation [146] of Ti content in Ni-rich matrix during
growth of the γ ′ precipitate, plotted as weight fraction Ti versus t−1/3.

Figure 19 Plot [121] of the rate constant χ multiplied by the temper-
ature dependent factor C2

e /T 2 versus the reciprocal of the absolute
temperature.

Log(χW 2
e /T 2) versus 1/T . A plot of this type is

shown in Fig. 19. The resulting activation energy is
282.2 kJ/mole, which is in fair agreement with the re-
ported value of 256.7 kJ/mole for the diffusion of Ti in
very dilute Ni-Ti alloy [143].

The parameters �int and D are evaluated from the
experimental values of χ−1/3 and k1/3(φ) according to

TABLE VI Estimated values of �int and D from the application of
coarsening theory to 965 K data [121]

�int (J m−2) D (m2 s−1) D (m2 s−1)a

0.0213 1.51 × 10−18 1.08 × 10−18

aCalculated from the equation D = 0.86 exp[−61400/(RB T )] given by
Swalin and Martin [143, 150].

Figure 20 Plot [121] of ā/2γ ′ particle edge length versus t1/3 for a
Ni-8.74 wt% Ti alloy aged at 692◦C.

the Equations 40 and 41. K is determined from the
slope of the plot in Fig. 20. Substitution of the values
of the parameters in Equations 40 and 41 for aging at
965 K gives:

k1/3(φ) = 3.47 × 10−16 m s−1/3

χ−1/3 = 6.42 × 10−21 mole s1/3 m−3

� = 27.83 × 10−24 m3 mol−1

The values of �int and D determined from the above
results are shown in Table VI. The value for the dif-
fusivity (D∗) of Ti in dilute Ni-Ti alloys, obtained by
extrapolating the data from ref. 56 to 965 K, is also
shown [121] in Table VI.

7. Concluding remarks
The most widely applicable process for nickel-base
superalloys for the decomposition into a two-phase
mixture is that of nucleation, growth and coarsening
[149]. The overall reduction of precipitate surface area
is the driving force behind the growth of particles
larger than some critical size at the expense of smaller
ones. This process is known as both coarsening and
Ostwald ripening. In nickel-based superalloys strength-
ened by the γ ′ phase, based on Ni3Al, the kinetics
of coarsening of γ ′ particles have attracted consider-
able attension over the past four decades. Investiga-
tions have been made on “model” alloys such as Ni-Al
[7, 32, 119, 151], Ni-Al-Cr [22, 32, 122, 151], Ni-Al-
Co [152], Ni-Al-Mo-Ta [153] and Ni-Al-Mo-W [153],
as well as in certain complex industrial alloy systems
[25, 28, 134, 143, 154, 155].
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Coarsening experiments performed upon nickel-
base superalloys are generally interpreted as show-
ing diffusion-controlled growth. However, scatter in
experimental data generally makes it impossible to dis-
tinguish diffusion-controlled from interface-controlled
growth, since data often fit t1/3 and t1/2 approximately
equally well. As mentioned previous section, the study
performed by McLean [19], however, showed that long-
term coarsening behaviour really does follow diffusion-
controlled growth behaviour (i.e. t1/3) in several binary
and ternary alloys, thus demonstrating the existence of
diffusion-controlled growth mechanism of γ ′ precipi-
tates in Ni-base superalloys. γ ′ coarsening by diffusion
control has been found to commence at a very early
stage in the ageing process. An investigation [151] of
γ ′ precipitates in Ni-Al and Ni-Al-Cr alloys has shown
that the experimentally determined particle size distri-
butions of γ ′ had a good agreement with those predicted
by the BW theory. However, as McLean [19] pointed
out in his review study on the nickel-based superalloys,
γ ′ particle-size distributions (PSDs) are better fitted
by the encounter-modified LSW model (i.e. the LSEM
theory).

Irrespective of the rate controlling mechanism for
Ostwald ripening, it is the reduction in total interfacial
energy �int which drives the process. It is, therefore,
appealing to say that the difference in coarsening rates
(K ) are due to a reduction in interfacial energy due to
a reduction in the lattice mismatch between matrix and
particles [156]. Some previous work [32, 145] reports
that the particle size distribution (PSDs) broadens with
an increase in lattice mismatch. However, in contrary to
this, a study [151] on the Ni-Al and Ni-Al-Cr systems
has shown that an increase in lattice mismatch did not
affect the PSD.

7.1. Ostwald ripening kinetics of γ ′
precipitates

Activation energies for coarsening of γ ′ precipitate par-
ticles and for diffusion, and interfacial energies be-
tween γ ′ particles and γ -matrix can be determined
by proper manipulation of data from coarsening stud-
ies [11, 22, 146]. Namely, using particle coarsening
theory, specifically the pioneering works described by
Ardell, these parameters are obtained if the concen-
tration changes during coarsening can be measured
precisely.

According to the LSW theory for particle growth
from an initially supersaturated solid solution, there
are two stages of growth for the average particle size.
Initially the precipitates grow by diffusion of solute di-
rectly from the local matrix. The growth rate of the
average particle size, R̄(t), can be expressed as

R̄2(t) = 2D
ot (42)

where D is the solute diffusion coefficient in the matrix,
t is the time and the initial supersaturation is given


o = Co − Ce (37b)

where Co is the initial concentration, and Ce the con-
centration of solute in the matrix at equilibrium with
an infinitely large second phase particle. In the second

stage the particles start competing for solute and the
larger particles start competing for solute and the larger
particles grow at the expense of those smaller ones. This
process is called Ostwald ripening or coarsening. The
kinetics of this process are described by Equation 19.

As coarsening proceeds the degree of supersaturation
of the matrix with solute, 
(t), decreases as [157]


(t) = C(t) − Ce
∼= [χ (t − to)]−1/3 (43)

where C(t) is the average concentration of solute in the
matrix at time t , and χ is given by

χ = D(RB T )2

9ψ2
intC

2
e �

(38)

Although the LSW theory assumes a fixed volume frac-
tion of precipitate in its description of the asymptotic
coarsening case, in reality, for a constant amount of so-
lute the volume fraction of the second phase, φ, must
increase as the matrix concentration of solute decreases.
Following Ardell [11], who assumes an overall conser-
vation of solute, the relationship of the volume fraction
to the weight fraction of solute in the matrix, w, is

φ = w0 − w

wγ ′ − w
(44)

where w0 is the total weight fraction of solute in the
alloy and wγ ′ is the weight fraction of solute in the
precipitate phase.

The equilibrium value of the volume fraction, φc,
for the totally completed decomposition reaction is ob-
tained from this formula by setting w equal to the equi-
librium value we obtained from the phase diagram at the
appropriate composition. Taken together, Equations 38
and 44 yields an expression for the time dependence of
the volume fraction [157]

φ(t) = φc − [χ ∗ (t − to)]−1/3 (45)

where χ∗ =
(

w′ − we

1 − φe

)3

χ (46)

In Equations 20 and 38 the only unknown quantities are
the diffusion coefficient, D, and the precipitate-matrix
interfacial energy, ψint. It is convenient to define two
experimentally determined variables [157]:

α =
[

k(φ)

χ

]1/3

(47)

and

β = [k2(φ)χ ]1/3 (48)

Within the derivation of the LSW formula it is assumed
that the precipitate is entirely made up of solute. This
asumption allows the use of the following approxima-
tion [157]:

C p − Ce
∼= 1

�m
(49)

where C p is the solute concentration in the precipitate.
Equation 49 is valid as long as C p � Ce [158]. Since
C p = 0.236 [159, 160], and a representative value of
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T ABL E VII Coarsening rate results for different results and crystal-
lographic direction in Ni-12.5 at.% Al alloy [157]

T (K) [hkl] K (φ) (m3 · h−1 × 1030)

823 110 20.9
873 110 31.4
898 110 85.2
898 100 98.0
923 110 113.0
948 110 613.0
948 100 215.0
973 110 638.0
973 100 271.0

T ABL E VII I Results of integrated intensity analysis for Ni-12.5 at.%
[157]

T (K) χ (m9 s−1 mol−3 × 1018)

773 298.0
873 208.0
923 1660.0
973 39300.0

Ce is 0.11 [161], one can see that the approximation is
invalid. Within this change, Marsh and Chen [157] has
developed the following expression for the coarsening
rate:

K (φ) = 8�Dψint

9RB T

(
Ce

C p − Ce

)
(50)

Expressions for both D and ψint in terms of known
quantities are given by [157]

ψint =
[

RB T

2Ce

(
C p − Ce

�2

)1/3]
α (51)

D = 9

4

[
(C p − Ce)2

�

]1/3

β (52)

Applying Equations [50–52], Marsh and Chen [157]
has studied the kinetics of the particle-growth of the γ ′
particles during the precipitation reaction of a supersat-
urated solid solution single crystal of Ni-12.5 at.% Al
alloy at moderately high temperatures using an in situ
X-ray diffraction technique. The corsening rate, K (φ),
determined at different crystallographic directions for
different temperatures, is shown in Table VII [157],
which indicates the t−1/3 dependence. From these plots
the rate constant, χ , is obtained and listed in Table VIII
for four temperatures.

One of the assumptions inherent in the LSW theory
is that of a fluid matrix which is clearly not the case for
a solid solution. Li and Oriani [162] have employed a
volume constraint criterion for the solid state coarsen-
ing of coherent precipitates to arrive at an expression
for the “effective” diffusivity of the solute in the matrix

Deff = XNi DAl + DAl DNi(1 + XAl/XNi)

XNi DNi + XAl DAl
(53)

where XNi and XAl represent the mole fraction of the
components in the matrix. For diffusion values of Al and

Figure 21 Comparison of diffusion coefficient results for different lit-
erature values [157]. Key: Line “1”: best fit from [143], Line “2”: best
fit from [163], Line “3”: best fit from [164], �: Al in polycrystalline Ni
[165] ❡: Al in polycrystalline Ni [7, 32, 119], �: Ref. 157, •: Ni-self
diffusion in single crystals [166–168], and volume constrained calcula-
tions of Li and Oriani using both, ×: polycrystalline values [143, 164],
+: Single crystal values [166, 169].

Ni in polycrystalline Ni samples the values of Swalin
and Martin [143] and Hofman et al. [163], respectively,
are used. For the difusion values of Al and Ni in Ni sin-
gle crystals the values of Gust et al. [169] and Wazzan
[167], respectively, are used. These calculated values
of Deff along with other representative values from the
literature are shown in Fig. 21. As can be seen, the vol-
ume constraint correction appears to have little effect
and the values obtained are comparable to experimental
values.

As seen in Fig. 21 the results of this study show a
similar activation energy as well as a consistently lower
Do or entropy factor. The activation energy obtained by
a least squares fitting of the data neglecting the 823 K
data point is 262.5 ± 18.4 kJ mole−1. This compares
well with an average value of 266.3 kJ mole−1 obtained
from other experimental data displayed in Fig. 21 with
a range of 234.5–303.5 kJ mol−1.

The values for D and ψint found for a single crystal
of Ni-12.5% Al alloy by using Equations 51 and 52 as
well as the experimental results in Tables VII and VIII
are shown in Tables IX and X along the values ob-
tained by other researchers. The molar volume, �, of
the precipitate is based on a stoichiometric “molecule”
of Ni3Al. � is calculated using � = NAa3, where NA is
Avogadro’s number and a is the lattice parameter of the

TABLE IX Calculated diffusion values [157] for Ni-12.5 at.% using
the volume constraint relation of Li and Oriani [162] after the method of
Ardell [119] usin: (a) polycrystalline [143, 163], and (b) single crystal
[166, 169] measured diffusion coefficients for the constituent elements
[157]

T (K) Ln(Da) Ln(Db)

823 −37.93 −38.80
873 −35.73 −36.16
898 −34.73 −35.14
923 −33.78 −34.17
948 −32.88 −33.26
973 −32.02 −32.29
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T ABL E X Experimentally determined values [157] of interfacial en-
ergy ψint (mJ m−2) for Ni-12.5 at.%

T (K) ψ(int)a ψ(int)b ψ(int)c ψ(int)d ψ(int)e

823 16.9 – – – –
848 – 22.0 – – –
873 21.7 – – – –
898 – – 14.4 – –
923 16.6 – – – –
943 – – – 17.4 –
953 16.6
963 19.6
968 24.3
973 10.3
988 14.2
1073 6.2, 8.9, 11.9, 8.3

Note that the data in Table X were taken from the following refer-
ences: a = Ni-12.5% Al [157]; b = Ni-15.4 at.% Al [131]; c = Ni-6.35
and 6.71 wt.% Al averaged [119]; d = Ni-12.29% Al [170]; e = Ni-7.0,
8.0, 9.0, 9.9 wt.% [32], respectively.

unit cell. Using a = 3.567 × 10−10 m [160]. � is found
to be 27.34 × 10−6 m3 mol−1.

Changes in composition would alter the coarsening
rate, K (φ) by directly affecting �int, Ce and D. For
example, alloying elements Co and Mo are believed
to retard growth of the γ ′ precipitate particles [45].
Chromium has been found to reduce the solubility of
Al in the γ phase, thus reducing coarsening rates [171].
However, this finding has been contradicted by others
[172]. Also decreasing the Ti : Al ratio decreases the γ ′
coarsening rate [43]. On the other hand, rhenium re-
duces coarsening rates in Ni-base superalloys [173], at
least in short-term experiments. In this study, it is sug-
gested that coarsening of γ ′ is controlled by diffusion
of Re away from the particles.

Kim et al. [21] have investigated the growth kinetics
of the γ ′ precipitate in two “model” nickel-base cast su-
peralloys with higher strength and longer creep rupture
lives than advanced conventionally cast Ni-base super-
alloy Mar-M247. The alloys studied have the follow-
ing main compositions: Alloy 1: Ni-4.35% Al-10.4%
Cr-8.02% W-1.75% Mo-1% Ti; Alloy 2: Ni-4.52%
Al-8.48% Cr-9.68% W-1.76% Mo-0.95% Ti. Fig. 22
shows that the γ ′ in these alloys obeys the t1/3 law, sug-
gesting that the coarsening of γ ′ in these complex, high
volume fraction superalloys also follows the standard
t1/3 kinetics of diffusion-controlled particle growth.
Similar observations of the cubic growth kinetics of
γ ′ have also been made in a number of nickel-base su-
peralloys [26–28].The slop of each line in Fig. 22 is a
temperature dependent rate constant k(φ) [or K 1/3(φ)]
which can be used to determine the activation energy
Q. It is necessary to plot ln[k3(φ)T ] versus T −1 as in
Fig. 23 to obtain Q values. This yields activation ener-
gies of 272 and 277 kJ mol−1 for Alloy 1 and Alloy 2.
Despite the complexity of these alloys, the activation
energies correlate well to that for the volume diffu-
sion of both aluminum and titanium in nickel (270
and 257 kJ mol−1 [143], respectively), to the coars-
ening of γ ′ in binary Ni-Al and Ni-Ti alloys (270 and
257 kJ mol−1 [121], respectively), and to the coarsen-
ing of γ ′ in binary Ni-Al and Ni-Ti alloys (270 [7] and
282 kJ mol−1 [121], respectively), and to the coars-

Figure 22 Variation in mean particle size of γ ′-precipitates with age-
ing time at various ageing temperatures [21]. Key: �: 1143 K, alloy 1;
❡: 1223 K, alloy 1; �: 1293 K, alloy 1; �: 1143 K, alloy 2; •: 1223 K,

alloy 2; �: 1293 K, alloy 2.

Figure 23 Arrhenius plot for determination of the activation energy for
growth of γ ′ precipitates [21]. Key: ❡: alloy 1, Q = 272 kJ mol−1;
•: alloy 2, Q = 277 kJ mol−1.

ening of γ ′ in Udimet 700 (270 kJ mol−1) [21]. These
results indicate that the growth of γ ′ in the alloys is con-
trolled mainly by the volume diffusion of aluminum or
titanium in the matrix.

It was reported [153] that the study of Ni-Al-Mo-
Ta and Ni-Al-Mo-W alloys indicated that γ ′ coarsen-
ing kinetics are in accordance with the LSW theory
for the cube/ogdoad and rafted morphologies. In this
study, values of activation energy for coarsening were
255 and 251 kJ/mole respectively for Ta-containing and
W-containing alloys, which are rather close to the dif-
fusion activation energy for Al in Ni, i.e. 269.2 kJ/mole
[143]. In his study, Ardell [11] has determined the ac-
tivation energy for coarsening of γ ′ in Ni-Al system
to be approximately 269 kJ mol−1, which is very close
to the activation energy (269.2 kJ mol−1) for diffusion
of Al in very dilute Ni-Al alloys determined by Swalin
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T ABL E XI Activation energies for different nickel-base alloys

Activation energy
Alloy (kJ mole−1) Source

Ni-Al 290.5 [32]
Ni-Al 262.5 [157, 173]
Ni-Al 277.8 [43]
Ni-Si 259 [11]
Ni-Ti 282.2 [122]
Ni-Al-Cr 358 [32]
Ni-Al-Mo-Ta 255 [151]
Ni-Al-Mo-W 251 [151]
Ni-Al-Cr-W-Mo-Ti 272 [21]
Ni-Al-Cr-W-Mo-Ti 277 [21]

and Martin [143]. However, a study of Ni-Al system by
another worker [151] has shown that the activation en-
ergy for coarsening was rather high, i.e. 290.5 kJ/mole.
Also, the activation energy [11] for coarsening of γ ′ in
Ni-Si system is ∼=259 kJ mol−1, which is again almost
identical to the activation energy for diffuson of Si in
dilute Ni-Si alloys (257.9 kJ mol−1) [150]. Table XI
shows the results of activation energies for different al-
loying systems. Therefore, it is concluded that estimates
of activation energy for coarsening of γ ′ particles in Ni-
based superalloys have generally been approximately in
the range of 250 to 290 kJ/mole, which are rather com-
parable to that for diffusion of alloying elements in Ni.
In conclusion, γ ′ coarsening is a diffusion-controlled
process. It is believed that differences in activation en-
ergies for coarsening of γ ′ precipitate particles are due
to such factors as alloying compositions, scatters in ex-
perimental results, interactions between alloying ele-
ments, and different methods used for the evaluations
of the data.

Another important useful parameter determined from
the γ ′ coarsening experiments in Ni-based superalloys
is the interfacial energy (�int). There has been less
agreement in estimates of interfacial energy, with values
ranging from 0.0089 to 0.0 37 kJ m−2 [22, 121, 19, 152].
A theoretical calculation by Williams [174] gave a
value of 29 mJ m−2, which agrees fairly well with the
experiments.

Marsh and Chen [157] have also predicted the inter-
facial energy between the γ ′–γ system in Ni-12.5 at.%
Al alloy at different temperatures, using Equation 51.
The results for the interfacial energy along with those of
the other works are shown in Table X. The scatter in the
data were attributed [157] to the differing compositions
of Ni-Al represented as well as, possibly, a certain lack
of precision inherent in applying the LSW theory to the
analysis. Nevertheless, there is a tendency in the data
overall which suggests a decrease in the precipitate-
matrix interfacial energy as the temperature increases.
One explanation for this would be the greater thermal
expansion coefficient of the matrix compared to the pre-
cipitate [175]. This would lessen the interfacial misfit
and so the associated elastic strain energy [157].

7.2. Shape changes and splitting
in γ ′ particles

Elastically induced particle shape transitions are well
known to occur in two-phase coherent alloys. In cubic

materials, these transitions range from those that are
symmetry conserving (in the sense that the particles re-
tain the symmetry of the intersection of the point groups
of the particles and matrix phases), such as the sphere-
to-cube transition [96, 156], to those that are symmetry
breaking, such as the sphere-to-ellipsoid or cube-to-
cuboid transitions [7, 94]. Westbrook [53], Miyazaki
et al. [33] and Doi et al. [34] have also identified a
different type of transition, in which an isolated parti-
cle splits or fissions into two or more smaller particles.
These transitions can be understood qualititatively in
terms of the competition between the interfacial and
elastic energies [7, 33, 34, 85, 94, 96, 176]. In these
cases, the decrease in the elastic energy resulting from
the transition more than compansates for the accompa-
nying increase in the interfacial energy.

The first theoretical treatment of rafting was for-
mulated by Tien and Copley [12] who used a purely
thermodynamic argument to predict shapes that pre-
cipitates would assume in a stressed sample. Their
qualitative calculations showed that precipitates with a
smaller lattice parameter and elastic modulus than that
of the matrix can lower the energy of a sample by form-
ing plates perpendicular to an applied tensile stress. In
contrast, they predicted that compressive stress would
cause plates to form parallel to the applied stress. Their
theoretical work was supported by actual experiments
upon Udimet 700, a commercial superalloy in which
they believed the γ ′ phase have a lower modulus than
γ matrix. It is important to note that Tien and Copley did
not consider crystal anisotropy or interparticle interac-
tions in explaining directional coarsening. Their ability
to develop a satisfactory qualitative explanation with-
out considering these factors suggested that rafts could
form by the response of individual particles to applied
loads. Thus, it appeared that interparticle interactions
were not necessarily important in this alloy, which con-
tained a relatively low volume-fraction (39%) of γ ′.

The next major advance in understanding rafting
came from Pineau [53]. Pineau, too, ignored in-
terparticle interactions and anisotropy, but made a
more-sophisticated analysis of elastic energies. Specif-
ically, he considered elastic-energy terms arising from
three sources: lattice-parameter mismatch, differences
in modulus between matrix and precipitate, and inter-
actions between applied stress and coherency stresses.
Microstructure were predicted by calculating elastic
energies for three different shapes: spheres, needles
parallel to the applied stress, and plates perpendicular
to the stress. Pineau made quantitative predictions
indicating that stress-level as well as direction of stress
can affect the preferred direction of coarsening. In
particular, Pineau predicted that precipitates with lower
Young’s modulus than that of the matrix will always
form plates if the quantity σa/δ is positive, where σa

is the applied stress (tension-positive values) and δ is
lattice-parameter mismatch (positive when γ ′ has the
larger lattice-parameter). In contrast, negative values
of σa/δ would produce needle-shaped precipitates
parallel to the stress axis at low stress levels, while
higher stresses would produce plates perpendicular to
the stress. These predicted effects of stress-magnitude
apparently explained a discrepancy between the results
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of Tien and Copley [12] and unpublished work of
Carryy and Strudel [65]. Pineau also calculated that
particle dimensions had to exceed a certain minimum
size before rafting would occur. The minimum size
was predicted to decrease with increasing stress.

Miyazaki et al. [14] continuing the efforts to explain
rafting through elastic-energy considerations, consid-
ered effects of anisotropy. These authors predicted
shapes of precipitates in Ni-15 at.% Al stressed along
the [001] axis. They predicted that platelike precipitates
would form in all stress conditions (tension, compres-
sion, or unstressed); however, the stress-state would af-
fect orientation of the plates. Tension was predicted to
induce plates parallel to the applied stress, while com-
pression would cause the plates to form perpendicular
to the stress. These predictions were contrary to those
of Tien and Copley [12] and Pineau [53] but were con-
sistent with Miyazaki et al.’s own experimental results.
One important feature of Miyazaki et al.’s work was that
it produced experimental evidence for the importance of
interparticle interactions: during compressive loading,
the precipitates formed rods as an unexpected interme-
diate stage of plate-formation. Rods are unstable with
respect to plates, but they apparently form more rapidly.
Miyazaki et al. suggested that they could do so be-
cause the precipitates naturally align themselves along
〈001〉directions. Thus, rods might form more rapidly by
coalescence along the rows, whereas plate-formation
would require coalescence in two dimensions.

A different view about the rafting was provided by
Carry and Strudel [65, 89] who considered the effects of
plastic deformation by postulating the special disloca-
tion arrangement between the γ /γ ′ interfaces located
horizontal or vertical direction. They predicted precip-
itate shapes on the basis of whether the mobile disloca-
tions would reduce misfit stresses preferentially on ver-
tical or horizontal γ /γ ′ interfaces. It was assumed that
γ ′ has a smaller lattice parameter. Therefore, mobile
dislocations at the vertical interfaces would increase
the local stress. Hence, the γ ′ precipitate particles were
expected to form rods as the horizontal interfaces ad-
vanced at the expense of the vertical ones. Diffusional
transport of γ ′-forming elements between interfaces
would, of course, be enhanced by the dislocation that
connected them.

As the above discussion shows, various authors reach
contrary conclusions both in their theories and in their
experimental results. One possible explanation of these
discrepancies is the controversy over the relative moduli
of γ and γ ′, though modulus is irrelevant to Carry and
Strudel’s [65] model. Tien and Copley [12] and Pineau
[53] used elastic constants for Ni3Al and pure Ni, from
which they concluded that γ should have the higher
modulus. Miyazaki et al. [14] actually measured the
modulus of γ in their Ni-Al binary alloy, and found
that γ ′ had the higher modulus. However, Fisher [177]
responded to Miyazaki et al. with data showing that γ ′
has a lower modulus in the Ni-Al binary system.

Lattice-mismatch measurements may be another
source of disagreement among authors, since mismatch
changes with temperature. The importance of this effect
is now well recognized [37, 64, 178] but the theoretical

Figure 24 The ratio of the average size of the precipitate in two crystal-
lographic directions [i.e., R(110)/R(100)] versus time at 675◦C [157].

works discussed above have apparently not yet been
reconsidered in the light of it. A through theoretical
treatment of rafting would also have to consider elas-
tic interactions between particles. Johnson’s [93] work
provides a basis for such an effort, but also suggests the
theoretical difficulties posed by variations in particle
shape. In particular, Johnson showed that particle-shape
can affect both the sign and the magnitude of interac-
tion energies. Thus, it is conceivable that an alloy might
not raft if its γ ′ were spherical, for example, but would
if it were aged to make the γ ′ cubic.

Marsh and Chen [157] has studied the shape changes
of the γ ′ particles along the 〈110〉 and 〈100〉 direc-
tions during the precipitation reaction of a supersatu-
rated solid solution single crystal of Ni-12.5 at.% Al
alloy at moderately high temperatures using an in situ
X-ray diffraction technique. Fig. 24 shows the ratio of
the average precipitate dimensions along both the 〈110〉
and the 〈100〉 directions. For perfect spheres this ratio
should be constant and equal to unity. For perfect cubes
this ratio should be constant and equal to 1.414. In-
stead the ratio is seen to gradually increase within the
range between these two values indicating that the mor-
phology transition of sphere to cube is ongoing during
coarsening.

It is well known that the morphology of coherent pre-
cipitates in two-phase alloys is strongly influenced by
the elastic energy associated with the misfit between the
precipitate and matrix structures. The reason is that the
elastic energy depends on the shape, habit plane config-
uration of the precipitates, and as well as their volume.
The shape dependence of the elastic energy is treated in
the original work of Eshelby [8, 58, 74]. The preferred
shape and habit are determined by the requirement that
the sum of the elastic and surface energies be a min-
imum. The shape and habit that minimize the elastic
energy depends on the elastic anisotropy of the system,
which can be expressed in terms of the anisotropy fac-
tor: A = C11 − C12 − 2C44, where the Ci j are the cu-
bic elastic constants. The Ni3Al phase has negative
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anisotropy. For such precipitates the elastic energy is
minimized when the precipitates has the form of an
arbitrarily thin plate with a (100) habit. If the surface
tension is isotropic, as it seems to be to reasonable ap-
proximation in most cubic systems, the progression of
the preferred shape during coarsening is from a sphere
to a cube bounded by (100) planes to a plate with a (100)
habit that progressively thins as coarsening continues.

Kachaturyan et al. [96] have theoretically ana-
lyzed the strain induced shape changes in coars-
ening cubic shape precipitate particles and have
made the following predictions: (a) Sphere → Cube
if 2ao ≥ 7.7ro; (b) Cube → Doublet if 2ao ≥ 27ro;
(c) Doublet → Octet if 2ao ≥ 82ro; (d) Octet → Plate
if 2ao ≥ 377ro. Where 2ao is the particle size before
shape change, ro is the �int/E1 ratio and E1 is the elas-
tic energy per unit volume. Transition size is sensitive
to the value of the interfacial energy between the parti-
cles and matrix. Splitting occurs when the cubic shape
attains. Based upon the above-mentioned criteria shape
changes of γ ′ particles in Ni-Al and Ni-Al-Cr systems
were investigated, and as a result no transition of the
shapes was possible [151]. It was suggested [151] that
if splitting of particles does occur during coarsening,
a discontinuous variation in the ā3 with t (instead of
a linear increase) would be expected. However, the ā3

versus t plots did not show such behaviour.
It was observed that during the coarsening of coher-

ent γ ′ precipitates, a single γ ′ particle sometimes splits
into a group of eight small cuboids (i.e. an ogdoad) (see
Fig. 8a) or into a pair of parallel plates (i.e. a doublet)
[30, 33, 41]. This type of splitting is a typical example
which indicates the importance of elastic interaction
energy in determining the shape of individual γ ′ pre-
cipitates. The effects of elastic interaction energy on the
shape might be described by the parameter 
∗, the ratio
of the γ –γ ′ lattice misfit to the surface energy of the γ ′
particles in the γ matrix (
∗ = δ/ψint). The following
three cases are observed according to the magnitude of

∗: (a) when |
∗| < 0.2 the single γ ′ precipitate parti-
cles remain spherical and never split into several small
particles, (b) when 0.2 < |
∗ < 0.4 the single cuboidal
γ ′ precipitate particles split into eight small cuboids (an
ogdoad) and (c) when 0.4 ≤ |
∗| the single cuboidal γ ′
precipitate particles split into pairs of parallel plates
(doublets).
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